

FACULTY OF SCIENCE Institute of Astronomy and Astrophysics

New constraints on the parameters of the neutron star in the SNR HESS J1731-347

D. Klochkov, V. Suleimanov, G. Pühlhofer, A. Santangelo

Central Compact Objects (CCO) - radio-quite, thermally emitting NS located close to geometrical centers of some SNRs

Kes 79, Chandra

Puppis A, ROSAT

Petre et al. (1996)

- ~11 objects are known
- kT ~ 0.2 0.5 keV
- 3 of 11 show pulsations
- B < 10¹⁰..10¹¹ G

A substantial fraction of NSs are born as low-magnetized CCO (?)

2

Together with XDINSs ("M7"), CCOs provide an "undisturbed" view of the NS surface (or even better because of low B) \rightarrow **constraints on fundamental NS parameters**

CCO in HESS J1731-347

CCO in HESS J1731-347: distance & emitting area

Observations (2007-2013)

Date	Satellite	exposure [ksec]	time res.
2007 Feb 23	Suzaku	41	8 s
2007 Mar 21	XMM-Newton	25	70 ms (PN)
2008 Apr 28	Chandra	30	3.2 s
2009 Feb 4	Swift	1.4	2.5 s
2009 Mar 9	Swift	1.4	2.5 s
2010 May 18	Chandra	40	2.85 ms
2012 Mar 2	XMM-Newton	24	0.03 ms (PN)
2013 Mar 7 ^(*)	XMM-Newton	72	70 ms (PN)
2013 Oct 6 ^(*)	XMM-Newton	61	70 ms (PN)

^(*)The new observations analyzed in this work.

Pure blackbody is rejected

Constraints on the distance

10

Fit with H-model

D. Klochkov / Neutron star in HESS J 1731-347 / G353.6-0.7

Conclusions

CCOs are vary promising laboratories for studying neutron stars.

The amount of XMM-Newton data on the CCO in HESS J1731-347 has increased by a factor of five. The new analysis lead to following results:

- •~7.5% upper limit on pulsed fraction for P > 0.14 s
- no long-term variability/cooling
- C or H atmosphere spec. fit is clearly preferred over BB-fit
- hydrogen atm. fit lead to unrealistic distances, R_{NS} , and M_{NS}
- with the carbon atm. fit, the data prefer D < 5..6 kpc
- new constraints on the neutron star M and R
- most "conventional" EoSs require a distance of 3-4 kpc

Long-term flux monitoring: ~7 years

Long-term flux monitoring: ~7 years

Long-term flux monitoring: ~7 years

Search for pulsations

March 2013 (AO11), useful exp.: ~44 ks

Rayleigh Z₁²-statistics: no periodic signal above 99% c.l.

The 99% upper limit on the pulsed fraction of the source signal in 0.35-5.5 keV for sinusoidal pulsations down to 2x70ms = **0.14s** is **7.5%** (for the total signal - 7.1%)

Timing observations in 2012 (AO10), useful exp.: ~22 ks

The 99% upper limit on the pulsed fraction of the source signal in 0.35-10 keV for sinusoidal pulsations down to **0.2ms** is **11.5%** (for the total signal - 8.3%, *Klochkov et al. 2013*)

Systematics due to BG-region selection

D. Klochkov / Neutron star in HESS J 1731-347 / G353.6-0.7

NS Radius [km]

20