Exploring the Outskirts of Galaxy Clusters

Eric Miller MIT Kavli Institute Jithin George U. Maryland

Mark Bautz, Richard Mushotzky, Dave Davis, Patrick Henry

Clusters as Tools

- cosmology
 - formation of structure is governed by gravity; measuring mass distribution of clusters is a direct test of cosmology

astrophysics

- non-gravitational processes (AGN and SN heating, radiative cooling) change the thermodynamics
- chemical evolution
 - "beacons" that can trace production and distribution of elements

A Word About "Entropy" **Fundamental Relation of Thermodynamics** $dU = \delta Q - \delta W$ internal heat work energy dU = TdS - PdVentropy

A Word About "Entropy"

dU = TdS - PdV

- entropy encodes the thermal history of the gas; only heat energy transferred in or out of the system can change the entropy
 - shock heating, AGN heating, radiative cooling

From Cavagnolo+09:

"Thus, gravitational potential wells are giant entropy sorting devices: low entropy gas sinks to the bottom of the potential well, while high entropy gas buoyantly rises to a radius at which the ambient gas has equal entropy."

The Power of Entropy

Cavagnolo+09 (ACCEPT)

Entropy in the Outskirts

- AGN feedback
- merging mixing
- cool core vs. non-cool core

Entropy in the Outskirts

- hydrostatic equilibrium?
- low-entropy accreting halos?

• EM
$$\propto n_{\rm e}^2$$

→ inferred density may be enhanced by "clumping"

 \rightarrow lower $K = kT n_e^{-2/3}$

Comparison with Simulations

Roncarelli+2006 (also Burns+2010, Nagai+2011)

Clusters to R₂₀₀ with Suzaku

PKS 0745-191

Abell 2204

Abell 1795

Abell 1413

Abell 1689

Perseus

Abell 2142

RXJ 1159+5531

Centaurus

ESO 3060170

George+2009 Walker+2012

Reiprich+2009

Bautz+2009

Hoshino+2010

Kawaharada+2010

Simionescu+2011 Urban+2013 Akamatsu+2011

Humphrey+2012

Walker+2013

Su+2013

...and more!

Clusters to R₂₀₀ with Suzaku

- differing azimuthal coverage
- heterogeneous analysis methods
- plan:
 systematic
 observations of
 well-defined sample

Suzaku Cluster Outskirts Project

Cluster	Ζ	R ₂₀₀	ksec	date obs.
A383	0.187	9.3	110	July 2010
AI4I3	0.135	14.8	170	May 2010 + archive
A1795	0.063	26.0	260	June 2009 + archive
A1914	0.174	14.5	160	June 2010
A2204	0.151	8.11	140	Sep 2010 + archive
A3378	0.137	12.2	150	May 2010
A773	0.216	9.5	200	May 2011
A2667	0.221	10.0	200	July 2011
A1068	0.147	10.8	200	Oct 2011
A665	0.179	11.7	200	April 2012
A2597	0.080	15.0	200	Dec 2012

- selected from Snowden et al. 2008 XMM cluster catalog
- "relaxed", no substructure
- falling, flat, and rising *kT* profiles
- full azimuthal coverage out to R_{200}

Background Systematics

S_{cluster}(R₂₀₀) < 30% of X-ray background

- Galactic thermal BG + cosmic X-ray BG
 - use outer regions, ROSAT

A2204 ROSAT PSPC

Background Systematics

S_{cluster}(R₂₀₀) < 30% of X-ray background

scattered X-ray flux from bright core

Background Systematics

S_{cluster}(R₂₀₀) < 30% of X-ray background

• point source Poisson noise

with Chandra snapshots:
 σ_{SB} < 5% of X-ray BG (full annulus)

Temperature

Temperature

Entropy

Entropy

Pressure

Pressure

Summary (1/2)

- 20+ clusters observed to R_{200} with Suzaku
- our study: 6 of 11 clusters, full azimuthal coverage
 - support "universal" temperature, entropy, pressure profiles
 - Suzaku background systematics addressed (PSF, stray light, point sources)

Summary (2/2)

- entropy encodes thermal history of gas
- most clusters have entropy decrement beyond R₅₀₀
 - low-entropy, clumpy (group- and galaxy-scale) infalling halos
 - radius of turn-over varies greatly
 - mass?

variations predicted in simulations (Nagai+11) but not yet constrained in observations

• environment?

two isolated fossil groups have no entropy decrement (Humphrey+12, Su+13)