Completing the census of heavily obscured AGN with Athena

Francisco J. Carrera, Xavier Barcons (IFCA, CSIC-UC, Spain) Antonis Georgakakis (MPE, Germany) Ioannis Georgantopoulos, Thanassis Akylas (NOA, Greece) Andrea Comastri (INAF-OaBo, Italy) James Aird (U. Durham, UK) (building on work by the Athena WG "Obscured Accretion and galaxy evolution") "X-ray Universe 2014, Dublin, Ireland, 16-June.2014

Instituto de Física de Cantabria

Outline

- Athena/WFI for dummies
- Why bother with heavily obscured AGN?
- Method
- Resolved extragalactic XRB fraction
 - Detection of Compton Thick AGN
- Spectral simulations:
 - Recognition of mildly CT AGN
 - Characterization of mildly CT AGN
- logN-logS and survey:
 - Numbers
- Summary
- (De-scoping options and consequences)

Athena/WFI for dummies

- ESA approved "Hot and Energetic Universe" for L2 (2028) (Parmar'X14)
- Proposed Athena as X-ray observatory to implement "H&EU" (Nandra'X14):
 - Single mirror module:
 - ~2m² @1keV 0.25m² @6keV
 - HEW: 5" on-axis
 - Two instruments:
 - X-IFU (Barret'X14): hi-res spcpy $\Delta E < 2.5 \text{eV}$, 5'x5' FoV
 - WFI (Rau'X14): imaging 40'x40' FoV, △*E*<150eV
 - Wide range of subjects within topic above, plus observatory science
- For wide-area surveys WFI is instrument of choice

Why bother about heavily obscured AGN?

- Most energy emitted from accretion in the Universe is obscured
- Relationship between build-up of SMBH and growth of host galaxies:
 - through obscured phase z~1-4

- Many different synthesis models (..., Gilli et al. 2007, Treister et al. 2006, Akylas et al. 2012...):
 - Using: source counts, XLF, CXB spectrum... extrapolating to z>3
 - Based on Unified AGN Model
- Unclear (but significant) contribution of Compton Thick objects

Why bother about heavily obscured AGN?

- Many different synthesis models (..., Gilli et al. 2007, Treister et al. 2006, Akylas et al. 2012):
 - Using: source counts, XLF, CXB spectrum... extrapolating to z>3
 - Based on Unified AGN Model
- Unclear (but significant) contribution of Compton Thick objects

Method

- Spectral model:
 - Brightman & Nandra (2011): torus model from Montecarlo simulations, high inclination
 - Additional 1% scattering component
- FoV-averaged:
 - Response matrix
 - PSF: HEW~6.4arcsec
- Backgrounds:
 - xgal and Gal: Lumb
 - Particle: Hauf+11 ×2 (>2keV)
- Source counts: Gilli+07

Energy (keV)

Resolved extragalactic XRB fraction

- Divided full par. space into N_H,z,L_X "cubes"
- Calculated intensity from each "cube"
- For each exposure time t:
 - Iteratively calculated SNR in each "cube"⇒ fracion of sources detected in that "cube" ⇒ total xgal XRB resolved

- Until convergence
- 70-80% reached with modest exposures (~10ks):
 - After that improvements are very modest

Detection of CT objects: 1Ms

- Immediate byproduct of previous work
- Source detected if SNR≥5 in 0.5-2, 2-10 or 0.5-10keV
- Detection fraction in L_x(2-10keV)-z plane
- Together with L*, dashed line (Aird +10)
- t=1Ms:
 - •logN_H=24.5
 - ▲logN_H=25.5
 - L* up to z=4

Detection of CT objects: 100ks

- Immediate byproduct of previous work
- Source detected if SNR≥5 in 0.5-2, 2-10 or 0.5-10keV
- Detection fraction in L_x(2-10keV)-z plane
- Together with L*, dashed line (Aird +10)
- t=100ks:
 - •logN_H=24.5
 - ▲logN_H=25.5
 - L* up to z=3

Detection of CT objects: 30ks

- Immediate byproduct of previous work
- Source detected if SNR≥5 in 0.5-2, 2-10 or 0.5-10keV
- Detection fraction in L_x(2-10keV)-z plane
- Together with L*, dashed line (Aird +10)
- t=30ks:
 - •logN_H=24.5
 - ▲logN_H=25.5
 - L* up to z=2

Spectroscopic simulations

- But detections are not enough:
 - Need to actually recognize CT objects as such ⇒Spectroscopic simulations
- For a subset of:
 - N_H,z,L_X
 - Exposure times:1Ms, 400ks, 300ks, 100ks, 60ks, 30ks
- 20 simulations of each combination:
 - Including Poisson noise in spectrum and backgrounds
 - Taking into account resolved xgal XRB fraction
 - Each sim. spectrum fitted
 - Calculated $\Delta \chi^2$ 90% uncertainties in N_H,L_X for each sim. spectrum
 - Found for which fraction of the sim. spectra the input parameters were recovered within 30% $\log N_{\rm H}=24.5 L_{\rm X}(2-10 {\rm keV})=5\times10^{44} {\rm cgs} {\rm z}=2$

Recognition of mildly CT objects

- Fraction of spectra for which at 95% $N_{\rm H}$ >1.5×10²⁴cm⁻²
- Concentrating on log(N_H/cm⁻²⁾⁼24.5
- Together with L*, dashed line (Aird +10)
- • t=1Ms
 - L* up to z=4
- ▲t=400ks
 - L* up to z=4
- • t=60ks
 - L* up to z=1

Characterization of mildly CT objects

- Fraction of spectra for which both N_H and L_X are recovered within 30%
- Concentrating on log(N_H/cm⁻²⁾⁼24.5
- Together with L*, dashed line (Aird +10)
- • t=1Ms
 - L* up to z=2
- ▲t=400ks
 - L* up to z=1
- 🔶 t=60ks

Source counts

- But fractions are not enough:
 - Need to get sufficient sources to do some sort of population studies
- Now we need additionally:
 - logN-logS: using Gilli+07 (next Akylas+12)
 - Survey geometry: ambitious ~25Ms
 - 4×1Ms+14×400ks+249×60ks
 - Over 5y nominal mission
 - Not only for this!:
 - High z AGN
 - Outflows/feedback

Numbers of CT sources in full survey

- Sources with L* (or just above):
 1000s detected up to z=3 (100s at z=4)
 1000s recognized as such up to z=3 (10s at z=4)
 ~20 characterized in N_H,L_x up to z=3
- Very rich harvest with L_X<L* z≤1

De-scoping options

- Proposal on budget and with high technical readiness
- But considering potential alternatives:
 - smallouter: removing outer mirror shells (loss of low En. eff. area)
 - largeinner: removing inner mirror shells (loss of eff. area at all En.)
 - highbgd: twice nominal particle background
 - lowbgd: half nominal particle background
- Consequences:

 - smallouter milder

Summary

• Athena is proposal for implementation of "Hot and energetic Universe" topic for ESA L2 (2028)

- Observatory

- Two instruments: X-ray IFU and Wide Field Imager
- Obscured AGN are important for galaxy-building and understanding history of accretion in Universe
- After some calculations and loads of simulations:
 - ~80% extragalactic XRB resolved in 0.2-10keV
 - Can detect >50% of CT L* for $z \le 2.5$ in ~30ks
 - Can recognize significant fractions of mildly CT L* for $z \le 3$ in ~60ks
 - Can characterize significant fractions of mildly CT L* for $z \le 2$ in ~ 100 ks
 - Assuming a given logN-logS: 1000s CT detected and recognized and 10s characterized to z~3: more than enough to tell apart models
 - Need to assess influence of assumptions (logN-logS...)
- Brilliant future ahead of X-ray (and multi- λ) AGN Astronomy
- We now need to build and launch it:
 - Opportunity for the full community