

Missing Baryons and the WHIM Current Evidence & Future Prospects

F. Nicastro (OAR-INAF) [Member of the X-IFU Science Team] Y. Krongold, M. Elvis, S. Mathur

Outline

- The Missing Baryon Problem and its Theory Solution:
 - The Warm-Hot Intergalactic Medium & its Phases
- Current Evidence of the WHIM:
 - Serious flaws in recent (2009, 2014) claims of WHIM at redshift of super-structures
- First Determination of Ω_b^{WHIM} and Metallicity in X-rays
 - The Chandra observation of "The best WHIM target in the Universe"
- Future Prospects: the Athena X-IFU

The Era of Precision Cosmology

6/23/14

Baryon Budget at z>2: the Ly α Forest

 $\Omega_{\rm b}^{\rm WMAP}h^{-2} = 0.0226 h^{-2} = 0.0456 \sim 5\%$: agrees with BBN

$\Omega_{\rm b}(z>2) > 0.018 \ {\rm h}^{-2} = 0.034 \sim 75\% \ \Omega_{\rm b}^{\rm WMAP}$

The Missing Baryons Problem

$\Omega_{b}^{WMAP}h^{-2} = 0.0226 h^{-2} = 0.0456 \sim 5\%$

~ 30-40% (or more) of Baryons Still Missing at z~0

6/23/14

The Theory Solution: the WHIM

6/23/14

Most of the WHIM has to be searched for in the X-rays

First Claimed WHIM Detections:

Exceptional Outburst State

"X-RAY ABSORPTION BY THE WARM-HOT INTERGALACTIC MEDIUM IN THE HERCULES SUPERCLUSTER"

Wavelength (Å)

The Era of Dark-Age Cosmology: A new Ptolemaic Universe ? ③

F. Nicastro ("The X-Ray Universe 2014", Dublin, Ireland)

The Beauty of the Inner-Shell Transitions

Kaastra+04

Level Configuration J Energy (eV) 2s² ¹S 0 0 1 2 $2s 2p^{3}P = 0$ 10.16 10.18 3 1 2 10.21 4 2s 2p 1P 5 19.69 1 $2p^{2} {}^{3}P$ 6 0 26.47 7 1 26.49 8 2 26.52 9 2p² ¹D 2 28.73 10 2p² ¹S 0 35.70 $2p^2$ $2s2p2p^2$ $2p^2$ 2s2p ³P₀ ³P₁ ³P₂ ¹S₀ ¹P₁ ¹D₂

Table 1. Energy levels of O v. Energies are taken from Wiese et al.

(1996). Levels 2-4 are the metastable levels discussed in this paper.

Fig. 1. Energy level diagram of O V. Only the n = 2 levels are shown. The energy differences within the ³P triplets have been exaggerated for clarity. Solid lines: transitions with transition probabilities larger than 1 s^{-1} ; the line thickness is proportional to the logarithm of the transition probability. Dashed lines: transitions with transition probabilities less than 1 s⁻¹.

Table 2. Strongest X-ray lines of O v. The values listed apply for the full multiplets (not splitted into sublevels).

Label	Initia	l state	Final state		f	λ	=
	Conf.	Term.	Conf.	Term.		(Å)	
A2	$2s^2$	1 S	1s 2s ² 2p	$^{1}\mathbf{P}$	0.649	22.381	Ground Level
A3	$2s^2$	^{1}S	1s 2s ² 3p	$^{1}\mathbf{P}$	0.108	19.871	·
A4	$2s^2$	${}^{1}\mathbf{S}$	$1s 2s^2 4p$	${}^{1}\mathbf{P}$	0.041	19.258	At logT=5.2 (where OV
A5	$2s^2$	${}^{1}\mathbf{S}$	1s 2s ² 5p	^{1}P	0.020	19.002	neaks) F=13.6 eV
A6	$2s^2$	${}^{1}\mathbf{S}$	1s 2s ² 6p	${}^{1}\mathbf{P}$	0.012	18.869	collisions may easily
A7	$2s^2$	${}^{1}\mathbf{S}$	1s 2s ² 7p	${}^{1}\mathbf{P}$	0.007	18.791	dependents the ground
A8	$2s^2$	${}^{1}S$	1s 2s ² 8p	${}^{1}\mathbf{P}$	0.005	18.742	depopulate the ground
A9	$2s^2$	${}^{1}S$	$1s 2s^2 9p$	${}^{1}\mathbf{P}$	0.004	18.708	level for the 1 st excited
B1	2s 2p	³ P	$1s 2s 2p^2$	$({}^{3}S){}^{3}P$	0.328	22.466	
B2	2s 2p	${}^{3}\mathbf{P}$	$1s 2s 2p^2$	$({}^{3}S){}^{3}D$	0.178	22.431	1 st Excited Level
B3	2s 2p	${}^{3}\mathbf{P}$	$1s 2s 2p^2$	$({}^{3}S){}^{3}S$	0.039	22.239	
B4	2s 2p	^{3}P	$1s 2s 2p^2$	$({}^{1}S){}^{3}P$	0.014	22.132	
C1	2s 2p	$^{1}\mathbf{P}$	$1s 2s 2p^2$	$(^{1}S)^{1}D$	0.182	22.558	•
C2	2s 2p	${}^{1}\mathbf{P}$	$1s 2s 2p^2$	$({}^{3}S){}^{1}P$	0.339	22.389	
C3	2s 2p	${}^{1}\mathbf{P}$	$1s 2s 2p^2$	$({}^{1}S){}^{1}S$	0.040	22.363	Also: Plenty of such photons in
D1	$2p^2$	${}^{3}\mathbf{P}$	$1s 2s^2 2p$	${}^{3}P$	0.005	23.643	or near a galaxy to photo-pump
D2	$2p^2$	${}^{3}\mathbf{P}$	$1s 2p^3$	³ D	0.173	22.511	OV at 1 st excited from higher
D3	$2p^2$	${}^{3}\mathbf{P}$	$1 \mathrm{s} 2 \mathrm{p}^3$	³ S	0.151	22.474	excitation levels
D4	$2p^2$	${}^{3}\mathbf{P}$	$1s 2p^3$	³ P	0.105	22.339	Position of the line great
E1	$2p^2$	1 D	$1s 2s^2 2p$	${}^{1}\mathbf{P}$	0.006	23.598	
E2	$2p^2$	1 D	$1s 2p^3$	^{1}D	0.328	22.477	density and location diagnostics
E3	$2p^2$	${}^{1}\mathbf{D}$	$1 \text{ s } 2 \text{ p}^3$	³ P	0.002	22.457	
E4	$2p^2$	${}^{1}\mathbf{D}$	$1 \text{ s } 2 \text{ p}^3$	${}^{1}\mathbf{P}$	0.112	22.306	
F1	$2p^2$	1 S	$1 \operatorname{s} 2\operatorname{s}^2 2\operatorname{p}$	${}^{1}\mathbf{P}$	0.002	23.855	
F2	$2p^2$	1 S	$1s 2p^3$	${}^{1}\mathbf{P}$	0.438	22.536	

F. Nicastro ("The X-Ray Universe 2014", Dublin, Ireland)

6/23/14

"Best WHIM Target in the Universe" 1ES 1553+113

F. Nicastro ("The X-Ray Universe 2014", Dublin, Ireland)

Tentative IGM IDs

Nicastro+13

Redshift	CV	CVI	OIV	OV	OVII	BLA	OVI (mA)	CIV (mA)
0.041±0.002	NA	NA	NA	NA	2.3σ	9.6σ	<65	<13
0.133±0.002	3.8σ	2.7σ	NA	NA	NA	5.4σ	<14	<25
0.184±0.001	3.6σ	NA	NA	NA	NA	NA	<11	NA
0.190±0.001	2.2σ	NA	NA	1.7σ	NA	9.3σ	7.6σ	NA
0.237±0.001	3.9σ	NA	NA	?	NA	5,2.2σ	<13	NA
0.312±0.001	4.1σ	4.1σ	NA	?	NA	8.1σ	3.6σ	NA

Sensitivity of the Chandra Spectrum of 1ES 1553+113 $N_{Ion} \ge 1.1 \times 10^{20} \frac{N_{\sigma} \Delta \lambda}{S / N} f_i^{-1} \lambda_i^{-2} (1+z)^{-1}$ $\log T = 5.0$ 5.5 6.0 N_{cv}, N_{ovII} (in 10¹⁶ cm⁻²) 0.1 CV CV **OVII** CV 0.01 10 60 100 120 lon Fraction OVII 0.1 OVIII 0.01 120 0.001 0.0001 10-10-6 0.2 0.1 0.4 0.3 0 10-60 100 120 Redshift b_{HI} (in km s⁻¹)

With the sensitivity of the current *Chandra* spectrum of 1ES 1553+113 bound to detect only the cool (logT < 5.6) WHIM in CV.

4x exposure with Chandra 1.6x with XMM \rightarrow 2x S/N \rightarrow N_{OVII} > 10¹⁵-10¹⁶ cm⁻² \rightarrow ~ 4 new systems sampling the hot WHIM

Cool WHIM at z=0.312: (6.3σ X-ray only)

Nicastro+13

From COS BLA and OVI b: $\Rightarrow b_{th} = 52 \pm 7 \text{ km s}^{-1} (b_{turb} = 30 \pm 14 \text{ km s}^{-1}) \Rightarrow \log T = 5.2 \pm 0.1$ Fully Consistent with presence of CV, OV, probably not CVI: Multiphase gas? If so [C/O] super-solar; mis-identified? CV at z=0.100?

Best-Fitting WHIM Parameters

Redshift	logT	N _H (10 ¹⁹ cm ⁻²)	n _b (10⁻ ⁶ cm⁻³)	Z/Z _☉ [= N _H (X)/N _H (FUV)]
0.041±0.002	5.45 ± 0.05	3.8 ± 0.8	1.0	0.13, +0.07, -0.10
* 0.133±0.002	5.4, +0.2, -0.6	** 2.2	119	NA
0.190±0.001	5.25 ± 0.05	1.9 ± 1.8	128	0.4, +0.4, -0.3
0.237±0.001	5.3 ± 0.1	0.3, +0.2, -0.1	135	2.7, +1.8, -2.2
0.312±0.001	5.25 ± 0.05	3.1, +1.6, -1.1	146	0.32, +0.19, -0.22

* No consistent X-Ray-FUV solution: BLA is too narrow and shallow to be imprinted by the X-ray absorber and OVI should be visible if logT<5.2

** From N_H(X) divided by the average $\langle Z/Z_{\odot} \rangle = 0.28 \pm 0.24$ determined for the z=0.041, 0.190, 0.312 systems

Metallicities and Cosmological Mass Density of the Cool WHIM

The WHIM: Short-Term Prospects Looking for OVII with the RGS

2 Ms (total) Chandra-LETG and 800 ks XMM-RGS would allow us to reach the sensitivity that the Chandra LETG Spectrum has for CV, and so to detect the OVII WHIM

X-IFU PERFORMANCE- EFFECTIVE AREA

Effective area curve comparison of Athena-X-IFU versus ASTRO-H SXS, showing that at low energies the gain in sensitivity is about 150 and more than a factor of 10 at 6 keV

Ravera et al. (2014, SPIE)

-IFU

X-ray Integral Field Unit

The WHIM: Future Prospects Athena+

X-ray Integral Field Unit

500 ks for $F_{0.5-2} = 0.1$ mCrab along a random WHIM LOS from Cen+06: detects 5 Systems with logT = 5.2-6.4 K, logN_H = 18.7-19.4 (Z/Z_{\odot})⁻¹ cm⁻² at z<0.5 All in OVII-OVIII; 2 in CV + OIV-OVI (Cool-Phase): excellent Density Diagnostics 6/23/14 F. Nicastro ("The X-Ray Universe 2014", Dublin, Ireland) 25/26

Summary and Future

- The Missing baryons in the local Universe are likely to reside in hot tenuous medium in the IGM, as predicted by hydro-dynamical simulations
- The claimed (and most credited) detections of the WHIM toward weak sources along crowded lines of sight suffer serious flaws in the data interpretation: putative redshifted OVII Kα are most likely OV Kα at z=0.
- The first detection of the cool WHIM has instead finally been secured in the X-rays along the line of sight to the best WHIM target in the Universe 1ES 1553+113: only cool portion with current sensitivity.
- Metallicity is relatively high (~0.3 on average), consistent with feedback models and recent cluster outskirts observations.
- After proper ionization and metallicity correction, CV-OVI-BLA dominated WHIM (i.e. logT=5-5.5) contains ~ 15% of Baryons → 40-50 % of Baryons are still missing and likely to reside in logT>5.5 WHIM, only detectable in Xrays
- Deeper Chandra-LETG and XMM-RGS observations of 1ES 1553+113 will allow us to break the detection limits of OVII and so start detecting the majority of the baryons in the WHIM.