Accretion impacts studied on the Sun

Fabio Reale
Dipartimento di Fisica e Chimica
Università di Palermo
fabio.reale@unipa.it

The X-ray Universe 2014
Trinity College Dublin, Ireland
16th - 19th June 2014
Accretion flows on young stars (T Tauri)
Accretion in YSO

- Disk-star: magnetic funnels (Königl 1991)

- Accretion flows: $V \gg 100 \text{ km/s}$

X-ray Accretion in T Tauri stars

- High density in relatively cool X-ray lines (e.g. NeIX, low f/i ratio)

Accretion impacts

- Models explain the X-ray emission from steady impact shock of continuous accretion column (e.g. Sacco+ 2010)

- Questions:
 - Accretion rate: UV/V/NIR \gg X. Why?
 - What is the role of absorption?
 - What is the role of stream structuring?

- Concept: use the Sun as a template
Accretion flows: impact region
Accretion flows: impact region
Bright hot impacts by erupted fragments falling back on the Sun: a template for stellar accretion

Fabio Reale (Univ. Palermo)
Salvatore Orlando (INAF-OAPa)
Paola Testa (Harvard CfA, USA)
Giovanni Peres (Univ. Palermo)
Enrico Landi (Univ. Michigan, USA)
Carolus (Karel) J. Schrijver (LMSAL, USA)

Bright Hot Impacts by Erupted Fragments Falling Back on the Sun: A Template for Stellar Accretion
Fabio Reale et al.
Science 341, 251 (2013);
DOI: 10.1126/science.1235692
The flare and the eruption:
7 June 2011

Tanaka+ 2011
Li+ 2012
Innes+ 2012
Muraki+ 2012
Cheng+ 2012
Williams+ 2013
Inglis & Gilbert 2013
Gilbert+ 2013
Carlyle+ 2014
Dolei+ 2014
van Driel-Gesztelyi+ 2014
The impacts region

08:00 UT - 171 A
Close up: 171 A (Fe IX, logT~5.9)
Data analysis

- **Impacting plasma:**
 - Density: $2 < n < 10 \times 10^{10} \text{ cm}^{-3}$ (from absorption)
 - Velocity: $300 < v < 450 \text{ km/s}$ (from images and STEREO data)
 - Size: $r \sim 2000-4000 \text{ km}$, $l \sim 2000-10000 \text{ km}$

- **Weak magnetic field** ($\beta \gg 1$, SDO/HMI)

- **Free fall** (STEREO)
Hydrodynamic simulations

- Hydrodynamic model of plasma blobs downfalling in a tenuous (10^8 cm$^{-3}$) corona (\sim1 MK)
 - Impact speed: 400 km/s
 - Density: 5×10^{10} cm$^{-3}$ (T\sim2000 K)
- 2D cylindrical geometry
- Spatial resolution: 5 km
- Radius: 2000 km
- FLASH code (Fryxell+ 2000)
Train of droplets
Train of droplets: 171 Å emission

- EUV emitting plasma: 7%
We match the observation....
Quantitative agreement: Light curves

- **Data**
- **Model**

![Graphs showing light curves with different time and flux scales, comparing data and model results.](image-url)
Hints/results stars vs Sun

Stars: X-rays
- Density: $10^{11} - 10^{13}$ cm$^{-3}$
- Velocity: 400-500 km/s
- Temperature: 2 – 4 MK
- Accretion rate:
 - Total: $10^{-11} - 10^{-7}$ M$_\odot$/yr
 - X-rays: $10^{-10} - 10^{-9}$ M$_\odot$/yr
- ?

Sun: EUV
- Density: 5×10^{10} cm$^{-3}$
- Velocity: 300-450 km/s
- Temperature: ~1 MK
- (Accretion rate: 10^{-14} M$_\odot$/yr)
- Absorption -> Emitting
 - Mass: 5-25%
- Emission from disk material
- Role of fragmentation
Conclusions

- Sun as a small-scale benchmark for accretion in YSO in EUV and X-rays
 - Insight: Impact evolution and mechanisms
 - New hints: role of absorption (see talk by S. Bonito)
 - New hints: emission from disk material
 - New hints: fragmentation
 - New hints: Doppler shifts

- Template for other phenomena? (e.g. funnelled flows)