Anatomy of the AGN in NGC 5548:

The high energy view with XMM-Newton, NuSTAR and INTEGRAL

> Francesco Ursini Univ. Grenoble-Alpes, IPAG

J. Kaastra, G. Kriss, M. Cappi, R. Boissay, P.-O. Petrucci, G. Matt, S. Bianchi & the NGC 5548 consortium

The X-ray universe Dublin, June 18 2014

High energy data

Obs.	Satellites	Obs. Id.	Start time (UTC) yyyy-mm-dd	${{ m Span} \atop { m (ks)}}$
1	XMM-Newton	0720110401	2013-06-30	56
	INTEGRAL	10700010001	2013-06-29	100
2	XMM-Newton	0720110601	2013-07-11	56
	NuSTAR	60002044002/3	2013-07-11	100
	INTEGRAL	10700010002	2013-07-11	100
3	XMM-Newton	0720110701	2013-07-15	56
	INTEGRAL	10700010003	2013-07-15	100
4	XMM-Newton	0720111101	2013-07-23	56
	NuSTAR	60002044005	2013-07-23	96
	INTEGRAL	10700010004	2013-07-23	130
5	Chandra	16314	2013-09-10	120
	NuSTAR	60002044006	2013-09-10	96
6	XMM-Newton	0720111501	2013-12-20	56
	NuSTAR	60002044008	2013-12-20	96
7	XMM-Newton	0720111601	2014-02-04	56
	INTEGRAL	11200110003	2014-02-09	38

Light curves: * XMM (black) NuSTAR (red) Integral (blue)

NuSTAR spectra above 10 keV + simple power law

Spectral curvature above 10 keV

Table 2. Best-fit parameters of the fit above 10 keV, with a simple a power law or including a high energy cut-off. p is the F-test probability of chance improvement with the CUTOFFPL model. ^{*a*}: INTEGRAL ^{*b*}: NuSTAR + INTEGRAL ^{*c*}: NuSTAR

		POWERLAW			CUTOFFPL			
Obs.	Г	$F_{20-40{ m keV}}$	$\chi^2/{ m dof}$	Г	$F_{20-40{ m keV}}$	E_c	$\chi^2/{ m dof}$	p
		$(imes 10^{-11}{ m erg/cm^2s})$			$(imes 10^{-11}\mathrm{erg/cm^2s})$	(keV)		
1^a	$2.1\substack{+0.5 \\ -0.4}$	$3.7\substack{+0.8 \\ -0.9}$	9.5/10	1^{+2}_{-1}	3.5 ± 1.0	>40	7.2/9	0.12
2^b	$1.60\substack{+0.02\\-0.02}$	$3.85\substack{+0.06\\-0.07}$	666/631	$1.3\substack{+0.1 \\ -0.1}$	$3.87\substack{+0.04\\-0.03}$	70^{+30}_{-20}	632/630	9E-9
3^a	$2.5\substack{+0.6 \\ -0.5}$	4.4 ± 1.0	12.7/10	1^{+2}_{-1}	$4.4^{+1.1}_{-0.7}$	>20	12.2/9	0.56
4^b	$1.60\substack{+0.02\\-0.02}$	$3.40\substack{+0.05\\-0.07}$	553/572	$1.2\substack{+0.1 \\ -0.1}$	$3.41\substack{+0.05\\-0.37}$	60^{+20}_{-10}	518/571	1E-9
5^c	$1.65\substack{+0.02\\-0.02}$	$3.43\substack{+0.06\\-0.07}$	629/562	$1.2\substack{+0.1 \\ -0.1}$	$3.43\substack{+0.06\\-0.07}$	50^{+17}_{-10}	583/56	7E-11
6^c	$1.56\substack{+0.02\\-0.02}$	$3.25\substack{+0.06\\-0.05}$	586/549	$1.1\substack{+0.1 \\ -0.1}$	$3.28\substack{+0.06\\-0.06}$	$37\substack{+7\\-4}$	495/548	7E-22
7^a	$2.2\substack{+0.8 \\ -0.6}$	$4.4^{+1.6}_{-1.4}$	9.9/10	2^{+2}_{-1}	$4.3^{+1.5}_{-1.3}$	>10	8.1/9	0.19

Fit with a cut-off power law

Constraining reflection: NuSTAR obs. above 5 keV pexmon + phabs*cutoffpl

Constraining reflection: NuSTAR obs. above 5 keV pexmon + phabs*cutoffpl

- The reflected component is consistent with being constant
- Final choice: Γ(pex)=1.9, Ec(pex)=300 keV, Norm(pex)=5.5E-3

Broad-band fit: WA[pexmon + pcfabs*pcfabs(cutoffpl+SE)]+NL

Table 3. Best-fit parameters of the primary power law and the absorber, when fitting the data down to 0.3 keV. The first, "thick" absorber, was not needed in obs. 5 (*Chandra* plus *NuSTAR*) and obs. 7. E_c is in keV, $F_{1 \text{ keV}}$ is in units of $10^{-2} \text{ ph/keV} \text{ cm}^2$ s and N_H is in units of 10^{22} cm^{-2} .

Obs.	Γ	E_c	$F_{1\mathrm{keV}}$	$N_H^{(1)}$	$C_F^{(1)}$	$N_H^{(2)}$	$C_F^{(2)}$	$\chi^2/{ m dof}$
1	$1.70\substack{+0.04 \\ -0.05}$	>100	$0.96\substack{+0.09\\-0.09}$	9 ± 1	$0.29\substack{+0.05\\-0.06}$	$0.75\substack{+0.03 \\ -0.03}$	$0.797\substack{+0.006 \\ -0.007}$	538/424
2	$1.74\substack{+0.01 \\ -0.04}$	>250	$1.13\substack{+0.03 \\ -0.07}$	$9.2\substack{+0.8 \\ -0.9}$	$0.32\substack{+0.02 \\ -0.03}$	$0.85\substack{+0.02 \\ -0.02}$	$0.829\substack{+0.004\\-0.003}$	1587/1393
3	$1.6\substack{+0.1\-0.2}$	>50	$0.7\substack{+0.2 \\ -0.1}$	9^{+3}_{-2}	$0.27\substack{+0.06 \\ -0.10}$	$1.06\substack{+0.06\\-0.10}$	$0.81\substack{+0.01 \\ -0.02}$	508/420
4	$1.68\substack{+0.05\\-0.05}$	> 150	$0.87\substack{+0.07 \\ -0.06}$	$8.5\substack{+0.8 \\ -0.7}$	$0.46\substack{+0.03\\-0.03}$	$1.27\substack{+0.06 \\ -0.06}$	$0.77\substack{+0.01 \\ -0.01}$	1346/1329
5	$1.74\substack{+0.01 \\ -0.03}$	>180	$1.00\substack{+0.05\\-0.05}$		-	$1.8\substack{+0.2\\-0.2}$	$0.62\substack{+0.03\\-0.03}$	1113/1094
6	$1.49\substack{+0.05 \\ -0.05}$	70^{+30}_{-20}	$0.56\substack{+0.05 \\ -0.05}$	8 ± 2	$0.33\substack{+0.06 \\ -0.06}$	$1.5\substack{+0.2 \\ -0.1}$	$0.68\substack{+0.04 \\ -0.04}$	1484/1308
7	$1.50\substack{+0.02 \\ -0.02}$	>120	$0.50\substack{+0.01 \\ -0.01}$	7///-//////		$0.44\substack{+0.04\\-0.04}$	$0.678\substack{+0.007\\-0.007}$	445/419

the thick obscurer

is not needed in Chandra obs. (low statistics) and in the XMM obs. of Feb 4 (source is recovering)

Broad-band fit: WA[pexmon + pcfabs*pcfabs(cutoffpl+SE)]+NL

 Variability of high energy cut-off and spectral index

Broad-band fit: WA[pexmon + pcfabs*pcfabs(cutoffpl+SE)]+NL

Absorption variability

Test of Comptonization model (compps) on average spectrum

Conclusions

- Spectral index varying between ~1.5 and ~1.7
- * Evidence of high energy cut-off
- Reflected component is consistent with being constant (material distant at least a few light months from the primary source)
- Confirmation of the strong, partial covering and variable Xray absorption
- Possibility to test Comptonization models (work in progress)