The X-ray continuum and soft excess emitting region sizes from occultation events

Giovanni Miniutti
Centro de Astrobiología - Madrid

with special thanks to Beatriz Agís and Mario Sanfrutos

The X-ray Universe 2014 - Dublin
Source #1: SWIFT J2127.4 (Sanfrutos et al. 2013)

Narrow Line Seyfert 1 \rightarrow Suzaku reveals a broad Fe K line (Miniutti et al. 2009) and an intermediate BH spin ($a \approx 0.6$)

This result was then confirmed with XMM+NuSTAR (see Marinucci’s talk tomorrow)

The Suzaku analysis also suggests a relatively high inclination (from the broad Fe line) of 45°

\rightarrow our LOS may intercept some obscuring gas (outflows/BLR/torus)
Source #1: SWIFT J2127.4 (Sanfrutos et al. 2013)

We then re-observed the source with XMM

→ investigating in some more detail any short timescale spectral variability

The hard-to-soft ratio (HS) light curve suggests the presence of an event during the first half of the observation.

To investigate its nature, we accumulate two spectra during the high and low HS intervals.
Clear signs of extra absorption are seen (both PN and MOS) during the high HS Interval

→ Likely occultation event

Spectral analysis indicates a layer of absorbing gas with \(N_H \approx 2 \times 10^{22} \text{ cm}^{-2} \) with variable covering fraction

→ \(C_f \approx 30-40\% \) in the high HS state

\(C_f \approx 0 \% \) in the low HS state

We then consider a fully time-resolved spectral analysis (24 intervals of about 5 ks each) to track the variable absorber
The C_f evolution is smooth and clearly demonstrates the passage of a discrete cloud into our LOS to the X-ray emitting region

Source #1: SWIFT J2127.4 (Sanfrutos et al. 2013)
RESULTS

- Cloud number density $n_c \geq 1.5 \times 10^9$ cm$^{-3}$
- Cloud size (diameter) $D_c \leq 1.5 \times 10^{13}$ cm
- Cloud distance $R_c \geq 4.3 \times 10^{16}$ cm
- Cloud velocity $v_c \approx 2100$ km/s

Then, since the maximum C_f is about 40 % we have that

- X-ray source size (diameter) is $D_s \leq 2.3 \times 10^{13}$ cm ≈ 10.5 R_g (single-epoch BH mass)
Source #2: ESO 362-G18 (Agís et al. MNRAS submitted & Miniutti et al. 2014, almost there) [already presented by Beatriz Agís in her talk on Monday]

Seyfert 1.5 galaxy with huge spectral variability on months/years timescales

![Graph showing energy and counts per unit area over energy for Swift 2005-11, XMM 2006-01, Suzaku 2008-04, and XMM 2010-01.](image-url)
All unabsorbed observation exhibit a strong SOFT EXCESS while the absorbed XMM1 observation does not

→ The soft excess is also absorbed

→ We may have a chance of deriving the size of the soft excess emitting region
As discussed by Beatriz Agís in her talk, the variability of the absorber between a Swift and an XMM observation separated by two months allows us to place an upper limit on the size of BOTH the X-ray corona and soft excess emitting region, namely

\[D_s \leq 96 \, R_g \]

In order to refine this limit, we would need to track an occultation event as we did in SWIFT J2127.4

no short timescale event was seen during any of the obs

\[\rightarrow \] consistent with the fact that we identified the variable absorber with the dusty clumpy torus (long timescales + UV correlated variability/reddening)

However, something happened on 2010 November the 11th in this galaxy ...

... and Swift followed up the SN evolution with UVOT (and XRT) with 36 short observations (1-2 ks) over the following 2.5 months

The quality of the individual observations is low, so to see whether further absorption variability events took place during the Swift monitoring, we consider appropriate hardness ratios

The quality of the individual observations is low, so to see whether further absorption variability events took place during the Swift monitoring, we consider appropriate hardness ratios.

We then **combine each three consecutive Swift obs** to reduce error bars.

Having combined three Swift obs, the data quality is now also sufficient to perform spectral analysis.
Having combined three Swift obs, the data quality is now also sufficient to perform spectral analysis.

Having combined three Swift obs, the data quality is now also sufficient to perform spectral analysis.

1) C_f evolution by absorbing both the power law and the disc-reflection (soft excess)

2) C_f evolution for the power law (black) and the disc-reflection component (red) allowed to have different C_f (i.e. different size)

\rightarrow The X-ray corona and the disc-reflection emitting regions are consistent with having the same geometrical size

BUT

As the C_f of the disc-reflection emitting region could be higher than that of the continuum

$D_{\text{reflection}} \leq D_{\text{corona}}$

The question is now to estimate this size from Within which BOTH components must come from

By using the same methods applied to SWIFT J2127.4, we have that

RESULTS

- Cloud number density $n_c \geq 1.1-2.5 \times 10^8 \text{ cm}^{-3}$
- Cloud size (diameter) $D_c \leq 1-3 \times 10^{14} \text{ cm}$
- Cloud distance $R_c \geq 0.2-2 \times 10^{18} \text{ cm}$
- Cloud velocity $v_c \leq 500-1200 \text{ km/s}$

Then, since the cloud maximum C_f is about 80% we have that

- X-ray source size (diameter) is $D_s \approx 20-50 R_g$

Assuming the natural symmetry, **BOTH the X-ray corona and the soft-excess emitting region are confined within 10-25 R_g from the central BH**, the soft excess being possibly slightly more compact than the corona

The occultation of the soft excess, if due to disc-reflection, may be used to test GR in the strong field regime
As the cloud size is comparable or larger than the emitting region, we have an almost symmetric evolution.
As the cloud size is comparable or larger than the emitting region, we have an almost symmetric evolution.

However, if it becomes comparable with the ISCO (1 to 6 R_g depending on BH spin) one starts to see BLUE and RED parts, as well as the ISCO itself.
As the cloud size is comparable or larger than the emitting region, we have an almost symmetric evolution.

However, if it becomes comparable with the ISCO (1 to 6 R_g depending on BH spin) one starts to see BLUE and RED parts, as well as the ISCO itself.
X-ray eclipses enable us to map the innermost regions of the accretion flow close to BHs [also Miniutti et al. 2013; Sanfrutos et al. 2013; Agís et al. sub; Miniutti et al. in prep.]

\[
D_C, D_s, V_C, t^{(pc)} = D_C/V_C, t^{(tr)} = (D_s-D_C)/V_C, t^{(pc)} = D_C/V_C, t^{(cr)} = (D_s+D_C)/V_C
\]