The X-ray properties of λ Cep, a true twin of ζ Pup?

Gregor Rauw, Yaël Nazé, Nicolas Gonzalez-Perez, Alexander Hempelmann, Marco Mittag, Jürgen Schmitt, Klaus-Peter Schröder, Anthony Hervé, Philippe Eenens, Eric Gosset

Overview

- □ Context: X-ray emission from single O-type stars.
- \Box Why λ Cep?
- □ Goals of this campaign.
- \Box The X-ray emission of λ Cep.
- □ Simultaneous optical spectroscopy.
- □ Conclusions and future work.

Context: X-ray emission from single Otype stars

□ "Standard scenario": instabilities of radiation-driven stellar winds lead to pockets of hot plasma embedded in an otherwise cool wind.

Feldmeier et al. 1997, A&A 322, 878

□ X-ray line profiles expected to be broad, blue-shifted and skewed (MacFarlane et al. 1991, ApJ 380, 564; Owocki & Cohen 2001, ApJ 559, 1108).

Observed on HETG and RGS spectra of ζ Pup (O4Ief) (Cohen et al. 2010, MNRAS 405, 2391; Nazé et al. 2012, A&A 538, A22)

But not all single, non-magnetic O-stars observed so far comply with this picture. The majority have rather narrow, symmetric lines (Oskinova et al. 2006, MNRAS 372, 313).

Are stellar winds porous? Are the mass-loss rates lower than determined from other wavelength ranges? Is ζ Pup an exception after all?

Why λ Cep?

	ζ Ρυρ	λ Сер		
Spectral type	O4Ief	O6Ief		
v sin(i) (km/s)	210	210		
$\log(\dot{M}) (M_{sun}/yr)$	-5.70	-5.85		
Multiplicity?	Single, runaway	Single, runaway		
B-field	No detection	No detection		
$f_{\chi}(erg \ cm^{-2} \ s^{-1})$	160 10-13	7 10-13		

 \Box λ Cep is the closest cousin of ζ Pup.

 \Box We have obtained 4 *XMM-Newton* observations of λ Cep

Obs	Date	Exposure time		
	JD-2450000	(ks)		
Ι	6456.677	82.5		
Π	6508.319	75.8		
III	6510.473	94.9		
IV	6514.317	70.7		

Goals of this campaign

- 1. Collect RGS data of λ Cep to check whether its lines are broad, blue-shifted as is the case for ζ Pup.
- 2. Perform a simultaneous X-ray and optical variability study and search for correlations.
- 3. Achieve a global fit of the RGS spectrum as we did for ζ Pup (Hervé et al. 2013, A&A 551, A83).

X-ray emission of λ Cep

 \Box λ Cep displays a rather soft thermal spectrum that can be represented by a combination of two plasma components @ 0.28 and 0.86 keV.

Obs.	$\log N_{\rm wind}$	kT_1	norm ₁	kT_2	norm ₂	$\epsilon(N)/\epsilon(N)_{\odot}$	χ^2_{ν} (d.o.f)	$f_X^{\rm obs}$	f_X^{int}
	(cm^{-2})	(keV)		(keV)				$10^{-13} \mathrm{erg}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	
Ι	$21.71^{+.03}_{02}$	$0.276^{+.004}_{004}$	$(3.50^{+.20}_{20}) 10^{-3}$	$0.85^{+.04}_{03}$	$(5.21^{+.43}_{42}) 10^{-4}$	$3.78^{+.56}_{68}$	1.66 (1253)	6.90 ± 0.10	16.8
II	$21.74^{+.02}_{02}$	$0.279^{+.003}_{003}$	$(4.46^{+.37}_{34}) 10^{-3}$	$0.86^{+.01}_{02}$	$(4.68^{+.34}_{20}) 10^{-4}$	$2.84^{+.51}_{48}$	1.76 (1265)	7.24 ± 0.09	17.9
III	$21.72^{+.02}_{01}$	$0.279^{+.003}_{004}$	$(4.05^{+.42}_{22}) 10^{-3}$	$0.86^{+.02}_{03}$	$(5.01^{+.43}_{23}) 10^{-4}$	$2.99^{+.44}_{53}$	1.74 (1370)	7.33 ± 0.10	17.9
IV	$21.71^{+.03}_{02}$	$0.286^{+.005}_{004}$	$(3.86^{+.46}_{33}) 10^{-3}$	$0.86^{+.02}_{02}$	$(4.79^{+.35}_{27}) 10^{-4}$	$3.91^{+.78}_{82}$	1.33 (1179)	7.50 ± 0.10	18.3

The combined RGS spectrum displays lines of Mg XI, Ne X, Ne IX, Fe XVII, Fe XVIII, O VII, O VIII and N VII

□ Individual lines were fitted with the standard model assuming a homogeneous wind with no porosity. The only free parameters are the onset radius of the emission region R₀ and the typical optical depth of the wind $\tau_* = \kappa \dot{M}/(4\pi R_* v_{\infty})$

□ Error bars on R_0 and τ_* are quite large, but the lines are clearly broad and blue-shifted.

- \Box $\tau_*(\lambda)$ should reflect $\kappa(\lambda)$ and could be used to infer \dot{M} (Cohen et al. 2014, MNRAS 439, 908).
- \square But $\kappa(\lambda)$ also depends on the position in the wind!
- □ Coherent treatment done in the fit of entire spectrum (underway).

□ No clear $\tau_*(\lambda)$ trend seen in our results.

■ Results are consistent with mass-loss rate proposed by Bouret et al. (2012, A&A 544, A67)

Simultaneous optical spectroscopy

- λ Cep displays optical spectroscopic variability on various time-scales (e.g. Uuh-Sonda et al. 2014, RevMexAA 50, 67).
- □ No stable periodicity, but recurrent variations possibly due to transient prominences (Henrichs & Sudnik 2014, IAUS 302) rotating with the star.
- □ Optical spectra were collected at OHP and with the TIGRE simultaneously with the *XMM-Newton* observations.

Double-peaked He II λ 4686 line, distinctive feature of Oef stars with large variations:

□ Fourier analysis yields peak at a frequency of 1.315 d⁻¹ (18.3 hrs = 66 ksec)

□ Do we see something similar in X-rays???

- No significant variations on time-scales from hours to a few days, but variations on longer timescales exist.
- □ Folding the de-trended X-ray light curve with the 1.315 d⁻¹ optical frequency reveals a modulation of ~4%, i.e. significant at 2σ.

Conclusions and future work

- \Box λ Cep displays broad, blue-shifted X-ray spectral lines in agreement with what is expected for its \dot{M}
- □ The optical spectrum displays variability, especially in the He II λ 4686 line on timescales of hours to a few days. Variations, if any, of the X-ray flux on these timescales are limited to a few %.
- □ There is no indication of X-ray emission from a magnetically confined wind co-rotating with the star.
- □ X-rays must arise from farther out than the formation region of the He II λ 4686 line.
- □ A fit of the full RGS spectrum is underway to constrain the radial distribution of the hot plasma in the wind.