

Millihertz to hectohertz variability in low mass Xray binaries as seen by XMM-Newton

Holger Stiele

with Wenfei Yu

Shanghai Astronomical Observatory, Chinese Academy of Sciences

The X-ray Universe 2014 Dublin, 16. June 2014

Main result

The observed power spectral shape depends on the energy band, and hence spectral component, we are looking at.

Timing properties as seen with RXTE

Additional PDS features

peaked noise component

The X-ray Universe 2014 – Dublin – 26 June

- high frequency QPOs
- centroid frequency at a few hundred Hz
- mainly observed during intermediate states Belloni et al. 2012, MNRAS, 426, 1701

GRO J1655-40

300 400 Frequency (Hz)

Frequency (Hz)

Motta et al. 2014, MNRAS, 437

4

XMM-Newton black hole Xray binary sample

I2 black hole XRBs
 60 archival observations in fast modes

Compared to RXTE XMM-Newton

has higher energy resolution
covers softer energies

PDS in low hard state

The X-ray Universe 2014 – Dublin – 26 June

BLN in low hard state

At least one component where $f_{1-2keV} < f_{4-8keV}$

GRS 1915+105

- detected 1992 with the WATCH instrument on-board GRANAT
- $M_{BH} \sim 14\pm4 M_{\odot}$; D ~12 kpc; orbital period ~33 d
- requires its own classification scheme \rightarrow shows 12 variability classes Belloni et al. 2000, A&A, 355, 271
- χ variability class ≈
 - conventional "hard" state

Reig et al. 2003, A&A, 412, 229; van Oers et al. 2010, MNRAS, 409, 763

Fender & Belloni 2004, ARA&A, 42, 317 class & class χ

- 5 archival XMM-Newton observations of GRS 1915+105 during its χ variability class from 2003 and 2004
- ğ source highly absorbed below 1.5 keV Martocchia et al. (2006, A&A, 448, 677)

The X-ray Universe 2014 - Dublin - 26 June

PDS of GRS 1915+105

- χ variability class
- 🗳 4.5 8 keV
- (4.9 14.8 keV)
- band limited noise and quasi-periodic oscillation (+ upper harmonics)
 overall shape
 - agrees between XMM and RXTE

The X-ray Universe 2014 – Dublin – 26 June

H. Stiele

PDS: Zoom in Low Energies

- 1.5 2.5 keV
- decent fit with power law

QPO upper limit of 7.2% rms, slightly below the soft band rms given in Rodriguez et al. (2004, ApJ, 615, 416) for a similar centroid frequency; QPO rms of ~11.5% in 1.5 - 8 keV

using a ZC-Lorentzian break frequency at ~0.45 Hz, while at ~3.35 Hz in the 1.5 - 8 keV band

MAXI J1659-152

Yu & Zhang 2013, ApJ, 770, 135

- similar result found for MAXI J 1659-152 based on Swift and RXTE data
 - in the HIMS, when the disc fraction exceeds ~30%:
 - above 2 keV: BLN and QPO
 - below 2 keV: power law noise
- fits into the picture of a relation between State C and the hard intermediate state

Energy Spectra

- re-analysis of quasisimultaneous archival XMM-Newton and RXTE spectra using same spectral model as in Martocchia et al. (2006, A&A, 448, 677)
- added multicolour disc component
- vabs*(diskbb+refsch+Lines) + excess emission
- disc component needed to obtain decent fits
- contributes ~20-30% in the 1.5

 2.5 keV band and only a few
 % in the 2.5 3.5 keV band

Schematic picture of the possible accretion geometry

Power spectral state depends on which spectral component we are looking at !

H. Stiele

Summary

- energy dependence of power density spectra
- in low hard state:
- break frequency of band-limited noise evolves with energy
- in (hard) intermediate state:
- two different PDS states coexist simultaneously in the hard and soft band
- observed PDS state depends on which spectral component we are looking at