INTEGRAL view of LS I +61 303 in orbital/superorbital phase space

Jian Li¹ Diego F. Torres¹ & Shu Zhang²

Institute of Space Sciences (IEEC-CSIC), Spain
 Institute of High Energy Physics (CAS), China

Outline

■ 1. Introduction of LSI +61°303

2. Spectral analysis in orbital/superorbital phase space

3. Hints of superorbital variability in the hard x-rays

4. Conclusions

Introduction

LSI +61 303 is a Be X-ray / gamma-ray binary, 2 ± 1 kpc, Orbit period: 26.496 \pm 0.0028 days. Superorbital period : 1667 \pm 8 days

Companion: B0 Ve star Mass: $\sim 12.5 \pm 2.5 M_{\odot}$ Radius: $\sim 10 R_{\odot}$

LSI +61 303 is among the elite gamma-ray binary group

Proposed scenarios for gamma-ray binary

Spectral analysis in orbital/superorbital phase space

In the hypothesis of LSI + 61 303 being a microqusar, Zimmermann & Massi (2012) expected:

a steady jet (radio index α >0) in the Hard X-ray state, 1.5 < Γ < 1.8 and a cutoff at high energies.

a transient jet (radio index α<0) in the Steep Powerlaw state (SPL), Γ>2.4.

radio index variations is explained in terms of a microquasar's changes of state.

■ No high energy cutoff is ever discover in LSI +61 303

The spectrum of LSI +61 303 is always well fitted by a power law with Γ < 2.4,</p>

with only one case , Γ = 3.6 (+1.6/-1.1), but the error bars are large. (Chernyakova et al. 2006)

Table 2. Orbitally separated spectra from ISGRI/IBIS observations (the results of our analysis are marked with a star) and a comparison with the previous work by Chernyakova et al. (2006), quoted in the three last columns.

Orbital phase	$\Gamma^{\star}(1\sigma)$	Flux* (20–60 keV) (10^{-11} erg cm ⁻² s ⁻¹)	Effective exposure* (ks)	$\Gamma(1\sigma)$	Flux (20–60 keV) $(10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1})$	Effective exposure (ks)
04-06	19 ± 0.2	2.84 ± 0.54	127	17 ± 04	38 ± 0.6	50
0.6–0.8	1.5 ± 0.3	2.09 ± 0.52	144	$3.6^{+1.6}_{-1.1}$	3.0 ± 1.0	23
0.8–0.4 Whole orbit	$1.4_{-0.3}$ 1.7 ± 0.2	1.07 ± 0.36 1.74 ± 0.26	307 578	1.4 ± 0.3 1.6 ± 0.2	2.4 ± 0.3 2.5 ± 0.3	200 273
	1.7 ± 0.2	1	270	1.0 ± 0.2	2.0 ± 0.0	275

Zhang et al. 2010

With exposure	time doubled	(Li et al. 2014):
---------------	--------------	-------------------

Orbital Phase	X-Ray Photon Index (Γ)	Flux (18–60 keV) ($10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}$)	Reduced $\chi^2(dof)$	Effective Exposure (ks)
0.0–0.4	$1.90^{+0.47}_{-0.40}$	1.63 ± 0.29	0.256 (4)	219.3
0.4–0.5	$1.60^{+0.22}_{-0.21}$	2.84 ± 0.30	0.763 (5)	162.3
0.5–0.6	$1.54_{-0.25}^{+0.28}$	2.84 ± 0.39	0.358 (8)	118.2
0.6–0.7	$1.44_{-0.30}^{+0.32}$	2.24 ± 0.35	0.424 (4)	154.2
0.7–1.0	$0.70_{-0.34}^{+0.33}$	$0.98^{+0.28}_{-0.27}$	0.26 (3)	273.7

The absence of states transitions could because the data are folded over too long time (Zimmermann & Massi (2012))

To test this, simultaneous radio and hard X-ray observations are the best choice, but...

Flux density (Jy)

counts/s (18-60 keV)

To solve the difficulties, we introduce the orbital/superorbital phase space

To solve the difficulties, we introduce the orbital/superorbital phase space

	Radio Index	X-ray Photon Index (Γ)
Expected	σ < 0	Г>2.4
	α > 0	1.5 < Γ < 1.8 + a cutoff
Observed	Radio Index	X-Ray Photon Index (Γ)
Observeu	$\alpha < 0$	$1.49^{+0.21}_{-0.19}$
	$\alpha > 0$	2.59 ^{+1.01}
		Li et al. 2014

Hints of superorbital variability in the hard x-rays

LSI + 61 303 is detected at 11 σ in 18-60keV.

The 200 days binned light curve shows a variability at 4.3 σ significance.

(χ² : 50.92/16 constant fitting13.42/14 1667 days sinusoidal function

Super orbital light curve, exposure and significance

a constant fit to the light curve yields a reduced χ^2 of 36.8/7, indicating variability at the 4.6σ level.

Conclusion

We found the absence of an X-ray spectrum softening during periods of negative radio index.
This does not force a simple interpretation of the radio

This does not favor a simple interpretation of the radio index variations in terms of a microquasar's changes of state.

2. We show hints that the superorbital variability of LS I +61°303 in hard X-rays, which is in line with the superorbital variability observed in other frequencies.

Thank you!