X-rays from low and intermediate mass stars

Jan Robrade

Hamburger Sternwarte

X-ray Universe, Dublin, 16-19 June 2014

The solar corona

Sun in X-rays: SDO, Yohkoh, TRACE

Solar corona is highly structured and dynamic

Jan Robrade (Hamburger Sternwarte)

Stellar X-ray emission

This talk:

Low and intermediate mass stars

- X-ray generation mechanisms
- Time evolution of X-ray emission

X-ray stars are (virtually) everywhere!

Cool stars in X-rays

- X-ray surface flux varies by orders of magnitude at given B-V
- Sun weakly active, coronal holes describe lower limit
- X-ray activity declines towards hotter stars

Cool stars in X-rays

- X-rays from magnetic activity, log $L_{\rm X}/L_{\rm bol} pprox -3$. . . -7
- $L_{\rm X} \propto$ dynamo power; Ro = P/ au_c
- powerlaw (slope?) saturation (level, breakpoint ?) supersaturation (?)

Coronal dynamo regimes

Activity regimes of stars (blue: Ro = 0.13, red: $R_c/R_* = 3$, green: $G_X = 0.01$) (Wright+ 2011)

(also: Jeffries+ 2011)

- dynamo regimes depend on mass and rotation
- supersaturation: excess polar updraft vs. centrifugal stripping

X-ray activity at very low masses

Very red dwarfs are faint... ...and fully convective!

Ultracool Dwarfs - magnetic activity at low masses

- quasi-quiescent X-ray emission, log $L_{\rm X}/L_{\rm bol} \approx -3.0 \cdots 5.0$
- ullet strong flares with hot plasma (\gtrsim 10 MK) frequent

Ultracool Dwarfs - X-ray/radio connection

- X-ray bright and radio bright group (also Stelzer+ 2012)
- UCDs violate Güdel-Benz relation

Ultracool Dwarfs - X-ray/radio connection

 changing/bimodal dynamo mechanism, increasingly neutral atmospheres (e.g. Mohanty & Basri 2003, Reiners & Basri 2010)

• radio bright objects, fast rotators: ECME, aurorae (Hallinan+ 2007/08)

X-ray activity at higher masses - A stars

The Summer Triangle by HST

(Altair, Deneb, Vega)

A stars are optically bright... but what about X-rays?

X-ray activity at higher masses - A stars

The Summer Triangle by HST

(Altair, Deneb, Vega)

Jan Robrade (Hamburger Sternwarte)

X-ray activity at higher masses

- A7 IV-V, $M=1.8/2.0~M_{\odot}$, age: $1.2/0.8~{
 m Gyr}$
- ultra-fast rotators, $Vsini \approx 220/280$ km/s, 60/80 % break-up
- virtual identical X-ray properties

X-ray activity at higher masses

X-ray light curve and high-res spectrum of Altair (A7) (Robrade & Schmitt, 2009)

- $L_{\mathrm{X}} = 1.4 imes 10^{27}$ erg/s, log $L_{\mathrm{X}}/L_{\mathrm{bol}} = -7.4$
- minor activity, rotational modulation, long-term stable corona
- coronal properties similar to inactive Sun
 - dominated by cool 1–4 MK plasma
 - solar-like abundance pattern (FIP effect, Ne/O ratio)
 - O VII f/i-ratio high (UV sensitive)

X-ray activity at higher masses

Surface images of Altair & Alderamin, CHARA (Monnier+ 2007, Zhao+09)

- oblate, gravity darkening \Rightarrow $T_{
 m eff} pprox$ 6800 K 8500 K
- X-ray surface features at $T_{
 m eff} \lesssim$ 7400 K
- 'equatorial bulge corona'

The fading of X-ray activity

- β Pictoris A6, young, debris disk (Hempel et al. 2005, Günther et al. 2012)
 - X-rays: very soft ($T_{\rm X} \approx 1$ MK), very faint (log $L_{\rm X} \approx 26.5$)
- $\implies \mbox{No significant magnetic activity around A5 (or earlier)} \\ \label{eq:limits} ... tight upper limits on Fomalhaut (A3) and Vega (A0) (log L_X < 25.5) \\ \end{tabular}$
- X-ray detections likely companions (e.g. VAST survey; De Rosa et al., 2011)

Ap/Bp stars – X-rays and the MCWS model

Ap/Bp stars: magnetic intermediate mass stars, chemically peculiar, slow rotators fields: large-scale, stable, uncorrelated, rare (< 10 %), fossil

- IQ Aurigae: A0p, ($T_{\rm eff} \approx$ 14500 K, M = 4.0 M_{\odot} , age \approx 60 Myr)
- ROSAT detection: X-ray bright, soft spectrum
- X-rays via magnetically confined wind-shocks (MCWS)

Ap/Bp stars – X-rays and the MCWS model

- hot plasma in quasi-quiescence & large flare
- strong soft X-ray component
- magnetic activity + wind shocks

Ap/Bp stars – IQ Aurigae

- $\log L_{\rm X\,qq} = 29.6 \ {\rm erg\,s^{-1}}$, $\log L_{\rm X}/L_{\rm bol} \approx -6.5$
- X-rays from well above the stellar surface (O VII $f/i \approx 1$, d $\gtrsim 7 R_*$)
- flare: $L_{\rm Xpeak} = 3 \times 10^{31} \text{ erg s}^{-1}$, very hot plasma: $T_{\rm X} \lesssim 100 \text{ MK}$
- metallicity increase, moderately sized structure, $L \lesssim 0.2 R_*$

Ap/Bp stars in X-rays

- X-rays predominantly in more luminous Ap/Bp stars ($L_*\gtrsim 200L_\odot$)
- sufficient mass loss & wind speed, strong magnetic confinement $(\eta_*\gg 1)$
- weak trend with opt. brightness ...but large scatter
- X-ray / Radio relation violated in all cases, radio-overluminous

Ap/Bp stars in X-rays

- no correlation of $L_{\rm X}$ with age or $B_{\rm eff}$
- unexplained scatter: magnetic field geometry, time variability, companions...

The temporal evolution of solar-like activity

The evolution of stellar rotation

Rotation vs. age for solar-like stars in open clusters (Gallet & Bouvier 2013)

- large spread of initial rotation periods
- ullet rotation is function of age and mass ($T_{
 m eff}$, color)

X-ray activity as age indicator

- $\bullet\,$ activity age: rotation $\Rightarrow\,$ dynamo processes/magnetic field $\Rightarrow\,$ activity
- steep decline, wavelength dependent

X-ray activity as age indicator

- well suited to identify young stars
- scatter in young stars age ok for ensembles like groups/clusters
- poorly calibrated beyond 1 Gyr, activity cycles in older stars

Activity cycles in X-rays

- cycles in more active stars often irregular
- multiple periods present

Activity cycles in X-rays

- cyclic X-ray activity in older solar-like stars, likely common
- diverse periods and amplitudes, coronal changes are solar-like
- var. more pronounced for hotter plasma/active regions

Activity cycles in X-rays

Low mass stars:

Magnetic activity omnipresent in stars with surface convection

- dynamo power related to rotation and internal structure
- strong evolution with time, appearance of activity cycles
- deviations from solar type dynamo at low and high mass end

Intermediate mass stars:

X-ray emission generated by MCWS phenomena

- sufficiently fast and strong winds required
- magnetic activity needed to explain X-ray phenomena in IQ Aur
- several details open

X-rays from YSOs

The youth of low and

intermediate mass stars

Jan Robrade (Hamburger Sternwarte)

Young low-mass stars: classical T Tauri stars

- magnetic activity omnipresent and strong
- X-rays from accretion shocks common (high density plasma + soft excess)
- stellar X-ray jets

Young low-mass stars: classical T Tauri stars

BP Tau (Schmitt + 2005), DN Tau (Robrade + 2014), MP Mus (Argiroffi + 2007), RU Lup (Robrade & Schmitt 2007), TW Hya (Kaster + 2002, Stelzer & Schmitt 2004, Brickhouse + 2010, 2012), V4046 Sgr (Günther + 2005, Argiroffi + 2012)... soft excess: Güdel & Telleschi 2007, Robrade & Schmitt 2007, Telleschi + 2007...

jets: Güdel+ 2007, 2011, Schneider & Schmitt 2008...+ sample studies like COUP, XEST...

See talks at: Stellar parallel session

HAeBe stars - young intermediate mass stars

- X-rays from jets, coronae (AB Aur, HD 163296...)
- large spread in log L_X/L_{bol} , companions? (Stelzer+ 2009)
- IMTTS at lower masses/younger age (RY Tau, SU Aur, T Tau...)

AB Aur (Telleschi+ 2007), HD 163296 (Swartz+ 2005, Günther & Schmitt 2009), SU Aur (Robrade & Schmitt 2006), RY Tau (Skinner+ 2011), T Tau (Güdel+ 2007)...

Jan Robrade (Hamburger Sternwarte)

Into the future ...

2015 – ASTRO-H (JAXA+): calorimeter, resolution 7 eV, 0.3-12.0 keV
2016 – eROSITA/SRG (D/Ru): all-sky survey, 0.3-10.0 keV

Talks on Thursday morning: Predehl, Guainazzi...