

Weak lensing calibrated scaling relations for galaxy groups and clusters in the COSMOS and CFHTLS fields

Kimmo Kettula
COSMOS, CFHTLenS and XMM-CFHTLS collaborations

Introduction

- Mass calibration of observables currently the biggest challenge in cluster count cosmology
- Calibrate weak lensing masses to X-ray observables for low and intermediate mass systems
 - X-ray masses assuming hydrostatic equilibrium (HSE) biased low
- Simulations indicate that baryonic feedback gets stronger with decreasing mass
 - Scaling relations involving low mass systems can have slopes differing from relations including only high mass systems

Introduction

- Mass calibration of observables currently the biggest challenge in cluster count cosmology
- Calibrate weak lensing masses to X-ray observables for low and intermediate mass systems
 - X-ray masses assuming hydrostatic equilibrium (HSE) biased low
- Simulations indicate that baryonic feedback gets stronger with decreasing mass
 - Scaling relations involving low mass systems can have slopes differing from relations including only high mass systems
- Contents:
 - 1) COSMOS M-Tx
 - 2) CFHTLS

COSMOS M – Tx relation

Kettula et al. 2013 / ArXiv:1309.3891

- M Lx relation using stacking analysis by Leauthaud+'10
- COSMOS X-ray galaxy group catalog (George+'11)
- $S/N > 10 \text{ sigma} \rightarrow 10 \text{ individual}$ systems with z = 0.124 - 0.834
- pn spectra from 0.1 0.5 R500
- Absorbed APEC model in 0.5 7.0 keV band
- Include scatter from central 0.1R500 to extraction region
- Local background estimates

- COSMOS lensing catalog (Leauthaud+ '07,'10,'12)
- Weak lensing mass by fitting NFW profile to shear profile
- Exceptional COSMOS data allows us to perform unique lensing measurements of low mass systems
- M500 ~ 1E13 1E14 Msol

Kimmo Kettula / X-ray Universe 2014, Dublin

COSMOS M – Tx relation

Assume power-law relation as in Kaiser (1986):

$$\log_{10} \frac{M_{500}E(z)}{10^{14}h_{70}^{-1}} = \log_{10} N + \alpha \times \log_{10} \frac{T_X}{3keV}$$

Include: 50 CCCP systems Hoekstra+'12, Mahdavi+'13 5 systems from 160SD Vikhlinin+'98, Mullis+'03

 χ^2 Normalisation degrees of Sample Slope Intrinsic scatter freedom $\log_{10} N$ α $0.39^{+0.04}$ COSMOS 28 ± 13 5.07 COSMOS+CCCP+160SD 28 ± 7 112.57 63

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI

Slope consistent with self-similar prediction of 1.5, scatter ~28%

COSMOS M – Tx relation

- Simulations and WL indicates that groups and clusters follow the same M-Tx scaling
- Group level relations assuming HSE are steeper
- First observational support for HSE mass bias at group scales, up to 30-50 % at 1 keV

Chandra vs XMM calibration

- Chandra gives systematically higher Tx than XMM-Newton
- Modify our XMM based temperatures to match Chandra calibration and refit M-Tx

Kimmo Kettula / X-ray Universe 2014, Dublin

$$T_X^{\rm modified} = T_X^{\rm XMM} \times \left(1 + \frac{0.15 \ T_X^{\rm XMM}}{10 {\rm keV}} \frac{1}{1+z}\right)$$

Chandra vs XMM calibration

- Chandra gives systematically higher Tx than XMM-Newton
- Modify our XMM based temperatures to match Chandra calibration and refit M-Tx
 - → Conclusions unaffected!

Low mass clusters in CFHTLS

Kettula et al., submitted

- 12 systems with > 400 counts in XMM-CFHTLS (Mirkazemi et al., submitted)
 - Measure core-excised luminosity Lx and temperature Tx
- Lensing: CFHT 5 band data from CFHTLenS
 - Fit NFW profile to shear profile
- Combine with 10 low mass systems from COSMOS and 50 high mass systems from CCCP
 - Sample of 72 systems with high quality lensing and X-ray data
 - M ~ 1E13-1E15 Msol
 - Use offset between BCG and X-ray peak to divide into subsamples of 15 merging (> 3 % of R200) and 52 relaxed systems (< 3 % of R200)

Scaling

					Г		-
	α	$\log_{10} N$	$\sigma_{ m A B}$				Eckmi Relaxe
]	\mathcal{L}_X - \mathcal{T}_X			1045		Merge All
All data	$2.46^{+0.12}_{-0.11}$	$0.24^{+0.03}_{-0.03}$	$0.17^{+0.02}_{-0.02} \text{ dex}$		n		All
Mergers	$2.46^{+0.12}_{-0.11}$ $2.43^{+0.17}_{-0.17}$	$0.23^{+0.04}$	$0.17^{+0.02}_{-0.02} \text{ dex}$ $0.13^{+0.04}_{-0.03} \text{ dex}$		44		
Relaxed	$2.47^{+0.15}_{-0.14}$	$0.24^{+0.03}_{-0.03}$	$0.19^{+0.03}_{-0.02} \text{ dex}$	F(2)-1	1044	_	
	N	$\Lambda_{200} ext{-L}_X$			I .		-
All data	$0.53^{+0.06}_{-0.05}$	$0.29^{+0.04}_{-0.04}$	$0.19^{+0.03}_{-0.02} \text{ dex}$		-0.1-2.4 keV		
Mergers	$0.51^{+0.14}$	$0.28^{+0.10}$	$0.27^{+0.09}_{-0.06} \text{ dex}$	_	ġ	1	
Relaxed	$0.55^{+0.07}_{-0.06}$	$0.29_{-0.04}^{+0.10}$	$0.27^{+0.06}_{-0.06} \text{ dex}$ $0.18^{+0.03}_{-0.03} \text{ dex}$			-	
	N	I_{500} - T_X		•	1042		
All data	$1.46^{+0.13}_{-0.13}$	$-0.00^{+0.03}_{-0.03}$	$0.13^{+0.02}_{-0.02} \text{ dex}$	•	1		
Mergers	$1.29^{+0.31}$	$-0.01^{+0.07}$	$0.23^{+0.09}_{-0.06}$ dex				
Relaxed	$1.57_{-0.16}^{+0.16}$	$-0.00_{-0.03}^{+0.03}$	$0.23_{-0.06}^{+0.09} \text{ dex}$ $0.09_{-0.03}^{+0.03} \text{ dex}$				
				•			

 α is the slope of the relation, $\log_{10} N$ the normalisation and $\sigma_{A|B}$ the intrinsic scatter in the independent variable.

Scaling

	α	$\log_{10}N$	$\sigma_{ m A B}$		
	\mathcal{L}_X - \mathcal{T}_X				
All data Mergers Relaxed	$2.46_{-0.11}^{+0.12} \\ 2.43_{-0.17}^{+0.17} \\ 2.47_{-0.14}^{+0.15}$	$\begin{array}{c} 0.24^{+0.03}_{-0.03} \\ 0.23^{+0.04}_{-0.04} \\ 0.24^{+0.03}_{-0.03} \end{array}$	$\begin{array}{c} 0.17^{+0.02}_{-0.02} \ \mathrm{dex} \\ 0.13^{+0.04}_{-0.03} \ \mathrm{dex} \\ 0.19^{+0.03}_{-0.02} \ \mathrm{dex} \end{array}$		

M_{200} -L_X

All data	$0.53^{+0.06}_{-0.05}$	$0.29^{+0.04}_{-0.04}$	$0.19^{+0.03}_{-0.02} \text{ dex}$
Mergers	$0.53_{-0.05}^{+0.05}$ $0.51_{-0.14}^{+0.14}$	$0.29_{-0.04}^{+0.10}$ $0.28_{-0.10}^{+0.10}$	$0.27^{+0.09}_{-0.06} \text{ dex}$
Relaxed	$0.51_{-0.14}^{+0.14}$ $0.55_{-0.06}^{+0.07}$	$0.28_{-0.10}^{+0.10}$ $0.29_{-0.04}^{+0.04}$	$0.18^{+0.03}_{-0.03} \text{ dex}$

M_{500} - T_X

All data	$1.46^{+0.13}_{-0.13}$	$-0.00^{+0.03}_{-0.03}$	$0.13^{+0.02}_{-0.02} \text{ dex}$
Mergers	$1.46^{+0.13}_{-0.31}$ $1.29^{+0.31}_{-0.32}$		
Relaxed	$1.57^{+0.16}_{-0.16}$	$-0.00^{+0.03}_{-0.03}$	$0.09^{+0.03}_{-0.03} \text{ dex}$

 α is the slope of the relation, $\log_{10} N$ the normalisation and $\sigma_{\text{A}|\text{B}}$ the intrinsic scatter in the independent variable.

	α	$\log_{10} N$	$\sigma_{ m A B}$		
	$\mathcal{L}_X\text{-}\mathcal{T}_X$				
All data Mergers Relaxed	$2.46_{-0.11}^{+0.12} \\ 2.43_{-0.17}^{+0.17} \\ 2.47_{-0.14}^{+0.15}$	$\begin{array}{c} 0.24^{+0.03}_{-0.03} \\ 0.23^{+0.04}_{-0.04} \\ 0.24^{+0.03}_{-0.03} \end{array}$	$0.17^{+0.02}_{-0.02} \text{ dex}$ $0.13^{+0.04}_{-0.03} \text{ dex}$ $0.19^{+0.03}_{-0.02} \text{ dex}$		
	$\mathrm{M}_{200} ext{-L}_X$				
All data Mergers Relaxed	$\begin{array}{c} 0.53^{+0.06}_{-0.05} \\ 0.51^{+0.14}_{-0.14} \\ 0.55^{+0.07}_{-0.06} \end{array}$	$\begin{array}{c} 0.29^{+0.04}_{-0.04} \\ 0.28^{+0.10}_{-0.10} \\ 0.29^{+0.04}_{-0.04} \end{array}$	$0.19^{+0.03}_{-0.02} \text{ dex}$ $0.27^{+0.09}_{-0.06} \text{ dex}$ $0.18^{+0.03}_{-0.03} \text{ dex}$		
$\mathrm{M}_{500} ext{-}\mathrm{T}_X$					
All data Mergers Relaxed	$1.46^{+0.13}_{-0.13} \\ 1.29^{+0.31}_{-0.32} \\ 1.57^{+0.16}_{-0.16}$	$\begin{array}{c} -0.00^{+0.03}_{-0.03} \\ -0.01^{+0.07}_{-0.08} \\ -0.00^{+0.03}_{-0.03} \end{array}$	$0.13^{+0.02}_{-0.02} \text{ dex}$ $0.23^{+0.09}_{-0.06} \text{ dex}$ $0.09^{+0.03}_{-0.03} \text{ dex}$		

 α is the slope of the relation, $\log_{10} N$ the normalisation and $\sigma_{\text{A}|\text{B}}$ the intrinsic scatter in the independent variable.

- Slopes consistent for merging and relaxed subsamples
- Merging systems display more scatter in mass at fixed Tx or Lx°

Intrinsic mass scatter in mergers

	α	$\log_{10} N$	$\sigma_{ m A B}$		
	$\mathcal{L}_X\text{-}\mathcal{T}_X$				
All data	$2.46^{+0.12}_{-0.11}$	$0.24^{+0.03}_{-0.03}$	$0.17^{+0.02}_{-0.02} \text{ dex}$		
Mergers	$2.43^{+0.17}_{-0.17}$	$0.23^{+0.04}_{-0.04}$	$0.13^{+0.04}_{-0.03}$ dex		
Relaxed	$2.47^{+0.15}_{-0.14}$	$0.24^{+0.03}_{-0.03}$	$0.19^{+0.03}_{-0.02} \text{ dex}$		
	$\mathrm{M}_{200} ext{-L}_X$				
All data	$0.53^{+0.06}_{-0.05}$	$0.29^{+0.04}_{-0.04}$	$0.19^{+0.03}_{-0.02} \text{ dex}$		
Mergers	$0.51^{+0.14}_{-0.14}$	$0.28^{+0.10}_{-0.10}$	$0.27^{+0.09}_{-0.06} \text{ dex}$		
Relaxed	$0.55^{+0.07}_{-0.06}$	$0.29^{+0.04}_{-0.04}$	$0.18^{+0.03}_{-0.03} \text{ dex}$		
$\mathrm{M}_{500} ext{-}\mathrm{T}_X$					
All data Mergers	$1.46^{+0.13}_{-0.13}$ $1.29^{+0.31}_{-0.32}$	$-0.00^{+0.03}_{-0.03}$ $-0.01^{+0.07}_{-0.08}$	0.13 ^{+0.02} _{-0.02} dex 0.23 ^{+0.09} _{-0.06} dex		
Relaxed	$1.57^{+0.16}_{-0.16}$	$-0.00_{-0.03}^{+0.03}$	$0.09^{+0.03}_{-0.03} \text{ dex}$		

- Assumption of NFW profile breaks down for merging clusters?
- Aperture densitometry mass measurements available for CCCP (Hoekstra+'12)
- Compare M-Tx residuals using NFW and aperture mass for 11 merging clusters in CCCP
 - Slightly different scaling with ~ 50% smaller scatter for aperture mass

- M-Lx and M-Tx overestimate mass in lowest Lx and Tx bin by ~ 1 sigma
- More observations of low mass systems needed to characterise low mass behaviour

Conclusions

- Lensing calibrated scaling relations for low and intermediate mass systems and divide into merging and relaxed subsamples on BCG to X-ray peak offset
- In contrast to previous relations assuming HSE both groups and clusters follow the same M-Tx scaling
 - Mass dependent HSE mass bias reaching 30-50 % at 1 keV
- Merging and relaxed clusters follow the same Lx-Tx, M-Lx and M-Tx scaling
 - Mergers scatter more at fixed M → mergers require different mass modeling than NFW
 - Mergers contribute little to the global scatter of X-ray selected samples, but can affect samples dominated by merging clusters
 - Tx a low scatter mass proxy for X-ray selected samples
- Residuals show a possible steepening for M-Lx and M-Tx relations at low masses
 - More measurements of low mass systems needed