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1.	
  introduction	
  
The variability of active galactic nuclei (AGN) in the X-ray domain is often estimated 
with the use of the normalized excess variance (NXS, e.g. Nandra et al. 1997, Vaughan 
et al. 2003, Ponti et al. 2012, Lanzuisi et al. 2014). This is defined as                              , 
where S2 is the total variance of the light curve, σn2 is the mean square error,  and       
is the mean of N total measurements. This estimator provides a straightforward 
average variability measure for each source on the basis of the available observations. 
However, its use is not always appropriate, because this parameter depends on the 
length of the monitoring time interval Δtrest in the rest-frame of the source, and is 
therefore biased for cosmological time dilation, as has been pointed out by more 
authors (e.g. Lawrence & Papadakis 1993, Papadakis et al. 2008, Vagnetti et al. 2011). 
The bias can be negligible when applied to low-redshift AGNs, provided that uniform 
monitoring time intervals Δtobs  are chosen (see e.g. Ponti et al. 2012). On the 
contrary, some authors use NXS even for AGNs in wide redshift intervals, so finding 
uncorrected variability estimates. Ensemble variability studies based on the structure 
function (SF) have shown that variability in various electromagnetic bands increases 
with the rest-frame time lag τrest between observations (e.g. Trevese et al. 1994, 
deVries et al. 2005, Vagnetti et al. 2011). The SF is a better estimator of the variability, 
allowing to describe it as a function of the time scale. Defining it as              	
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!
we can estimate the expected value of the normalized excess variance (neglecting the 
error) in a given time interval (0, Δtobs) as	


                                        	


!
This can be written through the structure function as                                            ,	


where the factor 1/2 accounts for the two independent measurements contributing to 
each SF flux difference, and Δtrest=	
  Δtobs/(1+z).  Adopting	
  a	
  power-­‐law	
  form	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
(Vagnetti	
  et	
  al.	
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!
so that                                                        . It is thus useful to estimate the excess 
variance for a fixed interval Δt* as follows:	


!
                                                                                                               (2)	


!
Both the effects of different monitoring times and of different source redshifts are 
present in this expression. The proposed correction is of course especially important 
for high redshift sources, whose variability would otherwise be underestimated.	


!
2. Data 
To test the proposed correction, we adopt the XMM-Newton Serendipitous Source 
Catalogue, Data Release 3 (XMMSSC, Watson et al. 2009) already used in Vagnetti et 
al. 2011. In this analysis we cross correlate XMMSSC with the quasar catalogues 
derived by the Sloan Digital Sky Survey, Data Release 7 (Schneider et al. 2010) and 

Data Release 10 (Paris et al. 2014).  Adopting a matching radius of 5 arcsec, we extract 
871 sources with observations in at least 2 epochs, for a total of 2683 observations 
(sample A). The histogram of the rest-frame time intervals is shown in Fig.1. We use 
the XMM-Newton band EP9 (0.5-4.5 keV). 	
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We show in Fig.2 the NXS values as a function of the number of epochs and notice 
that they converge to a nearly uniform level (with one exception for a strongly 
variable and flaring source) for relatively large number of epochs, while deviate a lot 
for small numbers, including also negative values. We have verified that a similar trend 
is obtained extracting N random data from a well sampled light-curve. It is thus 
desirable to exclude sources with a small number of observations. For the purpose of 
obtaining a sample sufficiently representative for our analysis, we choose a reasonable 
compromise, removing sources with only 2 epochs, and/or with NXS<0. The resulting 
sample includes 284 sources with a total of 1402 observations (sample B).	


!
3. Results and discussion 
To apply the correction of the cosmological bias to the NXS values, we have 
computed the structure function for sample B. This is shown in Fig. 3 and its slope	


is                           , equal to the value found by Vagnetti et al. 2011. In Fig. 4, we plot 
the NXS values as a function of the rest-frame length of the monitoring time (blue 
dots). There is evidence of an increasing trend with Δt, with slope 0.20±0.06 , 
correlation coefficient r=0.21, and probability P(>r)=4·10-3. We correct the NXS 
values according to Eq. 2, choosing a fixed rest-frame time interval Δt*=1000 days. The 
corrected values are plotted also in Fig. 4 as red dots; the corrected slope is about 
zero (0.002±0.060), with no correlation.  The cosmological bias is stronger for high 
redshift sources, which have in average higher luminosities, therefore we expect that 
NXS is underestimated for high luminosity sources. In Fig. 5, we show NXS as a 
function of the 0.5-4.5 keV luminosity; blue dots represent uncorrected NXS values, 
while the red dots correspond to the corrected values at 1000 days rest-frame. 
Power-law fits for the two cases are shown, with slopes -0.33±0.11 and -0.31±0.11 
respectively: the correction results in a slight flattening of the variability-luminosity 
relation. For comparison, we compute the dependence on luminosity for the 
variability estimates obtained by the structure function. We use the unbinned discrete 
structure function contributions for each pair of measurements i and j, UDSFij=	


|log f(ti)-log f(tj)|. Because some sources have much more numerous observations than 
others, we take average values of the UDSF for each of them, to weight the 
contributions of different sources uniformly. We then consider three bins of time lag 	


(                                                                      ), computing in each of them the 
average UDSF value for each source. This is shown in Fig. 6, where black, blue, and red 

points refer to bins of increasing time lag. The fits, corresponding to a power-law trend               
.                , produce k=0.23±0.11, 0.21±0.04, 0.16±0.05 for increasing time lag. To 
compare with the NXS result, we must consider that NXS gives average values of the 
variability without distinguishing the time scale. Looking at the histogram in Fig. 1, the 
dominant time intervals are between 300 and 1000 days. Taking the square root of 
NXS (usually called Fvar), we have                    , with k=0.165±0.06, and k=0.155±0.06 
for the uncorrected and corrected cases respectively. This is similar to the result of 
the SF for the 2.5-3 bin in log τ.	
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