Modeling the heartbeat state in the microquasar IGR J17091-3624

<u>artistic view</u>

Mikolaj Grzedzielski (1) - mikolaj@cft.edu.pl Agnieszka Janiuk (1) Fiamma Capitanio (2)

(1) Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland (2) INAF-Istituto di Astrofisica e Planetologia Spaziali, Via Del Fosso del Cavaliere 100, 00133 Roma Italy

Abstract

Microquasar IGR J17091-3624 exhibits faint, quasi-periodical outbursts of the period between 5 and 70 seconds and regular amplitudes, frequently referred to as the 'heartbeat state'. These outbursts are plausibly explained by the accretion disk instability, driven by the dominant radiation pressure. Similar models have already been proposed to discuss the behaviour of another, much brighter microquasar, GRS 1915+105. In the current work, we use our hydrodynamical code GLADIS (Global Accretion Disk Instability Simulation) to model these 'heartbeat' outbursts. We compare our results o the observational data from SWIFT XRT and we investigate the link bewteen the development of the disk instability and strength of massive wind launched from the source. We discuss the properties of this wind and compare them with the results of spectral analysis.

Microquasar IGR-J-17091-3624 Microquasar IGR J17091-3624 -

- Heartbeat at the period between 5 and 70 seconds possible by
- radiation pressure instability
- Moderately bright transient X-ray binary
- ullet Peak flux level at 20 mCrab in the range 20-100 keV • Discovered by INTEGRAL/IBIS in 2003 (Kuulkers et. al. Astron.
- Telegram. 149) • Was searched in archival data of previous missions
- (TTM-Kvant, BeppoSAX)
- At the end of January 2011 Swift/BAT reported renewed activity of IGR-J-17091; 28 February 2011 started a long monitoring campaign
- ullet 2011 outbursts increased to 120 mCrab
- IGR-J-17091-3624 presents fast and ionized wind observed during the soft spectral state

• Similatities between IGR-J-17091-3624 and GRS-1915+105

Simultaneous observations of IGR-J-17091-J-3624 with Chandra and RXTE show the presence of wind during some of the heartbeat states

Figure: The timeline sketch in Figure XX shows the periods in which the flare-like ents named "heartbeat" have been detected or not in the lightcurve of IGR J17091-3624. For this purpose we analized the data taken during the SWIFT/XRT observation campaign of the 2011 outburst and two CHANDRA observations (MJD=55775 and MJD=55840, respectively). The first CHANDRA observation did not show any detectable wind. Simultaneous radio observations did not detect jets. The second CHANDRA observation on the contrary shows a strong and fast wind. Also in this case, simultaneous radio observations did not detect jets.

Observational data

Obtaining the data: SWIFT mission

- X-Ray data from termal radiation of the disk XRT ullet 0.2 - 10 keV
- HEASOFT High Energy Astrophysics SOFTware v.6.15 • XRT pipeline

XSELECT extracting

3)

4) 5)

6)

7)

8)

_{РН} 9)

Spectral modeling

Figure: Fe lines in X-Ray spectrum, Fe lines in X-Ray spectrum (King et. al. 2012)

- ullet From the spectral modeling we have column density $0.475\cdot 10^{22}$ to $.14\cdot 10^{22}$ cm⁻
- We can compute column density of wind from our model
 - Results of the disk/wind model, for assumed parameters A = 15,

 $M = 6 M_{\odot}$, $R_{max} = 1000 R_{Schw}$

 $\circ M = 6M_{\odot}$

below 9

significantly

38.

37.

800

Figure: Without wind and $\dot{m} = 0.1$

Model with and without wind

• Accretion rate between 0.04 and 0.1 Eddington

• Amplitude (maximal luminosity / minimal luminosity)

• Wind parameter change period and range of outbursts

Figure: With wind strength parameter A = 15 and $\dot{m} = 0.12$

Figure: Grid of models, $\dot{m}=0.1$

Accretion disk profile - density and temperature

During the outburst

Between the outbursts

Lightman Eardley 1974 ApJ, vol. 187, p.L1

- Meyer Meyer-Hofmeister 1981 AA , 104, L10
 - Janiuk, Czerny, Siemiginowska 2002 ApJ vol. 576 pp.908â922
 - King et. al. 2012 ApJ Letters, Vol. 746, Issue 2, art. id. L20, 5 pp.

Figure: http://chandra.harvard.edu/photo/2012/igr/

and the secretion rate the larger is the size of unstable region in disk on rate the larger is the size of unstable region in disk

Theory of outbursts -

hydrodynamics

The mass conservation equation:		
$rac{\partial \Sigma}{\partial t} = rac{1}{2\pi r} rac{\partial \dot{M}}{\partial r}$	(3	
$\dot{M}=-2\pi r\Sigma v_r$	(4	
The angular momentum conservation:		
$\dot{M}rac{d}{dr}(r^2\Omega)=-rac{\partial}{\partial r}(2\pi r^2 T_{r\phi})$	(5	
We define $ u$ as the kinematic viscosity ($lpha$ - disk theory)		
$T_{r\phi}=lpha PH=(3/2)\Omega u\Sigma$	(6	
From mass and angular momentum conservation equations 5 and 6 we obtain the final formula on the evolution of the surface density of disk: 7		
$rac{\partial \Sigma}{\partial t} = rac{1}{r} rac{\partial}{\partial r} (3r^{1/2} rac{\partial}{\partial r} (r^{1/2}) u \Sigma)$	(7	
The radial velocity is given by:		
$v_r=-rac{3}{\Sigma}r^{-1/2}rac{\partial}{\partial r}(u\Sigma r^{1/2})$	(8	
In the disk we may have radiative cooling as well as convection, advection and diffusion. In our model we neglect the effects of convection and heat diffusion and assume the same equation as in		
$\partial \ln T$, $\partial \ln T$, $\partial \ln T$, $(\partial \ln \Sigma - \partial \ln H)$, $(\partial \ln \Sigma)$, $(\partial \ln \Sigma)$, $(\partial \ln \Sigma)$, $(\partial \ln \Sigma)$	Q_{-}	
$\frac{\partial t}{\partial t} + v_r \frac{\partial \ln r}{\partial \ln r} = \frac{12 - 10.5\beta}{12 - 10.5\beta} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} + v_r \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} - \frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \left(\frac{\partial \ln r}{\partial \ln r} \right) + \frac{12 - 10.5\beta}{(12 - 10.5\beta)} \right)$	$\beta)PI$	
	(9	

Wind model

The mass loss rate (propably in the vertical direction is equal to the ratio of the locally generated flux in the accretion disk, with a fraction determined by f_{out} . to the energy change per particle, $\hat{m}_2 = F_{iacl}(1 - f_{out})/(\Delta E/m_p)$. The local flux is given by the Equation (10) of the standard accretion disk theory

$F_{ m tot} = rac{3GMM}{8\pi r^3} f(r)$	(10
We assume f_{out} as a simple smooth rational function:	
$f_{out}=rac{1}{(1+A\dot{m}^2)}$	(11

We assume that this relation holds also in the hydrodynamical computations. We assume that this relation hous also in the hydrodynamical computations. The energy change per particle is on the order of virial energy, $\Delta E = BkT_{vir} = BGM/r$, with $B \sim 1$, so expressing the mass loss rate in terms of local variables, in the units of [g s⁻¹ cm⁻²], we have a final formula (12)

 $\dot{m}_z(r) = B rac{31}{4r} \Sigma v_r f(r) (1-f_{out})$ with f_{out} given by Equation 11.