#### ASTRO-H: SCIENCE GOALS, DEVELOPMENT STATUS, AND EUROPEAN CONTRIBUTION

Matteo Guainazzi (ASTRO-H ESA SOC) on behalf of the ASTRO-H project



#### Outline

- ASTRO-H science
- ASTRO-H development status
- Support to the European users' community



#### Outline

#### • ASTRO-H science

- ASTRO-H development status
- Support to the European users' community



## ASTRO-H in a nutshell

(Takahashi et al., 2012, SPIE, 8443, 1)

ASTRO-H is an international X-ray observatory, which is the 6th in the series of the X-ray observatories from Japan. More than 160 scientists from Japan/US/Europe/ Canada.



- Launch vehicle: JAXA H-IIA rocket
- Orbit Altitude: 550km
- Orbit Inclination: ~31 degrees
- Launch : 2015
- **International Cooperations**



58 institutions (Japan 33)

266 scientists & leading engineers (Japan 152)



#### ASTRO-H science goals

- Universe large-scale structure and its evolution
  - Galaxy clusters: bulk motions and turbulence, dynamical evolution, non-thermal energy and chemistry, cosmological mass function
  - Evolution of (heavily obscured) supermassive black holes (SMBH)
- Accretion flow onto SMBH in the strong gravity regime
- Cosmic-rays acceleration in SuperNova Remnants and galaxy clusters
- Soft γ-ray polarimetry
- Observatory science (stars, XRBs, WDs, Galactic Centre ...)



(Takahashi, 2013, MmSAI, 84, 776)

| Parameter       | Hard X-ray                  | Soft X-ray                  | Soft X-ray                 | Soft γ-ray                         |
|-----------------|-----------------------------|-----------------------------|----------------------------|------------------------------------|
|                 | Imager                      | Spectrometer                | Imager                     | Detector                           |
|                 | (HXI)                       | (SXS)                       | (SXI)                      | (SGD)                              |
| Detector        | Si/CdTe                     | micro                       | X-ray                      | Si/CdTe                            |
| technology      | cross-strips                | calorimeter                 | CCD                        | Compton Camera                     |
| Focal length    | 12 m                        | 5.6 m                       | 5.6 m                      | -                                  |
| Effective area  | 300 cm <sup>2</sup> @30 keV | 210 cm <sup>2</sup> @6 keV  | 360 cm <sup>2</sup> @6 keV | $>20 \text{ cm}^2@100 \text{ keV}$ |
|                 |                             | 160 cm <sup>2</sup> @ 1 keV |                            | Compton Mode                       |
| Energy range    | 5 –80 keV                   | 0.3 – 12 keV                | 0.5 – 12 keV               | 40 – 600 keV                       |
| Energy          | 2 keV                       | < 7 eV                      | 150 eV                     | 4 keV                              |
| resolution      | (@60 keV)                   |                             | (@6 keV)                   | (@40 keV)                          |
| (FWHM)          |                             |                             |                            |                                    |
| Angular         | <1.7 arcmin                 | <1.3 arcmin                 | <1.3 arcmin                | -                                  |
| resolution      |                             |                             |                            |                                    |
| Effective       | ~9×9                        | $\sim$ 3 $\times$ 3         | $\sim 35 \times 35$        | $0.6 \times 0.6 \text{ deg}^2$     |
| Field of View   | arcmin <sup>2</sup>         | arcmin <sup>2</sup>         | arcmin <sup>2</sup>        | (< 150 keV)                        |
| Time resolution | several 10 µs               | several 10 µs               | 4 sec                      | several 10 µs                      |
| Operating       | -20°C                       | 50 mK                       | -120°C                     | -20°C                              |
| temperature     |                             |                             |                            |                                    |



(Takahashi, 2013, MmSAI, 84, 776)

| Parameter       | Hard X-ray                  | Soft X-ray                  | Soft X-ray                 | Soft γ-ray                         |
|-----------------|-----------------------------|-----------------------------|----------------------------|------------------------------------|
|                 | Imager                      | Spectrometer                | Imager                     | Detector                           |
|                 | (HXI)                       | (SXS)                       | (SXI)                      | (SGD)                              |
| Detector        | Si/CdTe                     | micro                       | X-ray                      | Si/CdTe                            |
| technology      | cross-strips                | calorimeter                 | CCD                        | Compton Camera                     |
| Focal length    | 12 m                        | 5.6 m                       | 5.6 m                      | -                                  |
| Effective area  | 300 cm <sup>2</sup> @30 keV | 210 cm <sup>2</sup> @6 keV  | 360 cm <sup>2</sup> @6 keV | $>20 \text{ cm}^2@100 \text{ keV}$ |
|                 |                             | 160 cm <sup>2</sup> @ 1 keV |                            | Compton Mode                       |
| Energy range    | 5 –80 keV                   | 0.3 – 12 keV                | 0.5 – 12 keV               | 40 – 600 keV                       |
| Energy          | 2 keV                       | < 7 eV                      | 150 eV                     | 4 keV                              |
| resolution      | (@60 keV)                   |                             | (@6 keV)                   | (@40 keV)                          |
| (FWHM)          |                             |                             |                            |                                    |
| Angular         | <1.7 arcmin                 | <1.3 arcmin                 | <1.3 arcmin                | -                                  |
| resolution      |                             |                             |                            |                                    |
| Effective       | $\sim 9 \times 9$           | $\sim 3 \times 3$           | $\sim 35 \times 35$        | $0.6 \times 0.6 \text{ deg}^2$     |
| Field of View   | arcmin <sup>2</sup>         | arcmin <sup>2</sup>         | arcmin <sup>2</sup>        | (< 150 keV)                        |
| Time resolution | several 10 $\mu$ s          | several 10 $\mu$ s          | 4 sec                      | several 10 µs                      |
| Operating       | -20°C                       | 50 mK                       | −120°C                     | -20°C                              |
| temperature     |                             |                             |                            |                                    |

#### **High-resolution spectroscopy**



(Takahashi, 2013, MmSAI, 84, 776)

| Parameter       | Hard X-ray                  | Soft X-ray                  | Soft X-ray                 | Soft γ-ray                         |
|-----------------|-----------------------------|-----------------------------|----------------------------|------------------------------------|
|                 | Imager                      | Spectrometer                | Imager                     | Detector                           |
|                 | (HXI)                       | (SXS)                       | (SXI)                      | (SGD)                              |
| Detector        | Si/CdTe                     | micro                       | X-ray                      | Si/CdTe                            |
| technology      | cross-strips                | calorimeter                 | CCD                        | Compton Camera                     |
| Focal length    | 12 m                        | 5.6 m                       | 5.6 m                      | -                                  |
| Effective area  | 300 cm <sup>2</sup> @30 keV | 210 cm <sup>2</sup> @6 keV  | 360 cm <sup>2</sup> @6 keV | $>20 \text{ cm}^2@100 \text{ keV}$ |
|                 |                             | 160 cm <sup>2</sup> @ 1 keV |                            | Compton Mode                       |
| Energy range    | 5 –80 keV                   | 0.3 – 12 keV                | 0.5 – 12 keV               | 40 – 600 keV                       |
| Energy          | 2 keV                       | < 7 eV                      | 150 eV                     | 4 keV                              |
| resolution      | (@60 keV)                   |                             | (@6 keV)                   | (@40 keV)                          |
| (FWHM)          |                             |                             |                            |                                    |
| Angular         | <1.7 arcmin                 | <1.3 arcmin                 | <1.3 arcmin                | -                                  |
| resolution      |                             |                             |                            |                                    |
| Effective       | ~9 × 9                      | $\sim 3 \times 3$           | $\sim 35 \times 35$        | $0.6 \times 0.6 \text{ deg}^2$     |
| Field of View   | arcmin <sup>2</sup>         | arcmin <sup>2</sup>         | arcmin <sup>2</sup>        | (< 150 keV)                        |
| Time resolution | several 10 $\mu$ s          | several 10 $\mu$ s          | 4 sec                      | several 10 µs                      |
| Operating       | -20°C                       | 50 mK                       | −120°C                     | −20°C                              |
| temperature     |                             |                             |                            |                                    |

#### High-resolution spectroscopy Imaging up to 80 keV



(Takahashi, 2013, MmSAI, 84, 776)

| Parameter       | Hard X-ray                  | Soft X-ray                  | Soft X-ray                 | Soft γ-ray                         |
|-----------------|-----------------------------|-----------------------------|----------------------------|------------------------------------|
|                 | Imager                      | Spectrometer                | Imager                     | Detector                           |
|                 | (HXI)                       | (SXS)                       | (SXI)                      | (SGD)                              |
| Detector        | Si/CdTe                     | micro                       | X-ray                      | Si/CdTe                            |
| technology      | cross-strips                | calorimeter                 | CCD                        | Compton Camera                     |
| Focal length    | 12 m                        | 5.6 m                       | 5.6 m                      | -                                  |
| Effective area  | 300 cm <sup>2</sup> @30 keV | 210 cm <sup>2</sup> @6 keV  | 360 cm <sup>2</sup> @6 keV | $>20 \text{ cm}^2@100 \text{ keV}$ |
|                 |                             | 160 cm <sup>2</sup> @ 1 keV |                            | Compton Mode                       |
| Energy range    | 5 –80 keV                   | 0.3 – 12 keV                | 0.5 – 12 keV               | 40 – 600 keV                       |
| Energy          | 2 keV                       | < 7 eV                      | 150 eV                     | 4 keV                              |
| resolution      | (@60 keV)                   |                             | (@6 keV)                   | (@40 keV)                          |
| (FWHM)          |                             |                             |                            |                                    |
| Angular         | <1.7 arcmin                 | <1.3 arcmin                 | <1.3 arcmin                | -                                  |
| resolution      |                             |                             |                            |                                    |
| Effective       | ~9×9                        | $\sim 3 \times 3$           | $\sim 35 \times 35$        | $0.6 \times 0.6 \text{ deg}^2$     |
| Field of View   | arcmin <sup>2</sup>         | arcmin <sup>2</sup>         | arcmin <sup>2</sup>        | (< 150 keV)                        |
| Time resolution | several 10 $\mu$ s          | several 10 $\mu$ s          | 4 sec                      | several 10 µs                      |
| Operating       | -20°C                       | 50 mK                       | −120°C                     | -20°C                              |
| temperature     |                             |                             |                            |                                    |

High-resolution spectroscopy

Imaging up to 80 keV

Wide band, high sensitivity



#### Resolving power





#### Effective area - I.





#### Effective area - II.





#### Effective area - III.





#### Science Goals I. : galaxy clusters

(Nagai et al., 2011, ApJ, 777, 137)

Unprecedentedly accurate measurements of streaming and turbulent gas motions - Non thermal X-ray emission from radio structures - Chemistry of rare elements - Cluster evolution up to z~1 *Cosmology*: hydrostatic equilibrium bias, signatures of dark matter, constraints on dark energy





#### Science Goals II. : SMBH outflows

(Gallo & Fabian, 2013 MNRAS, 434, L66)

Measurement of wind velocity (outflow and circulation), density, covering fraction <u>AGN</u>: host galaxy feed-back (UFOs); <u>GBHC</u>: disk/wind connection  $\Rightarrow$  driving mechanism



100ks SXS simulation of GROJ1655-40

100ks SXS simulation of PG1211+143



## Science Goals III. : SNRs

(*Left*: Astro-H Shocks and Acceleration WP, in prep. *Right*: Maeda et al., ApJ, 2011, 750, 64)

Synergy between SXS and HXI will allow measuring: a) acceleration efficiency; b) magnetic fields; c) maximum energy available at shocks sites ⇒ origin of Galactic cosmic rays

The SGD may detect the <sup>56</sup>Ni 158 keV lines in Sn<sub>e</sub> Ia up to 25 Mpc (~a few per year)

SXI+HXI Spectrum of Cassiopea A(Continuum)





#### Outline

- ASTRO-H science
- ASTRO-H development status
- Support to the European users' community





HXT-1~1.5'-1.9', HXT-2~1.6'-1.9' (lower at higher energies)



#### XCS status\*

(Courtesy R.Kelley, NASA, and K.Mitsuda, ISAS/JAXA)



- HgTe absorber micro-calorimeter, 0.3-12 keV band
- 36 pixels, ~3×3' field-of-view
- Operation temperature: 50mK±2µK per 24-hour cycle
- Constant resolution over the whole bandpass: ~5 eV (in the <u>Engineering</u> <u>Model</u>)
- Non-dispersive spectroscopy, unaffected by source angular size
- Filter+modulated X-ray source: 1-2 eV gain monitoring accuracy (European contribution: SRON & Un.Geneva)



Resolution measurement during the calibration of the engineering module



#### SXI status

(Courtesy H.Tsunemi, Osaka University)





#### HXI status

- 2 units, 5 layers each to optimise the energy-dependent detection and reduce volume, *i.e.* soft background
- 4 layers of 0.5mm thick Double-sided Silicon Strip Detectors (<30 keV)</li>
- 1 layer of 0.7mm thick CdTe (20-80 keV)
- Active BGO scintillator shield to further remove background events
- ~2 keV energy resolution @60 keV



(Courtesy M.Kokubun and the HXI Team)



#### SGD status

(Takahashi et al., 2012, SPIE, 8443, 1; courtesy Poshak Gandhi, Durham Un.)

- Si/CdTe Compton camera, 40-600 keV, ~10 times more sensitive than Suzaku/HXD
- Compton kinematics allows the calculation of energy and provenance cone-in-the-sky
- Drastic background reduction through a narrow-FOV (~30') Compton telescope concept (BGO shield+PCuSn collimator)
- Can measure soft-γ polarization for sources ≥a few 10<sup>-2</sup> Crab, ≥10% polarized

## HXI and SGD sensitivity compared to the mCrab and other instruments





#### SGD status

(Takahashi et al., 2012, SPIE, 8443, 1; courtesy Poshak Gandhi, Durham Un.)

- Si/CdTe Compton camera, 40-600 keV, ~10 times more sensitive than Suzaku/HXD
- Compton kinematics allows the calculation of energy and provenance cone-in-the-sky
- Drastic background reduction through a narrow-FOV (~30') Compton telescope concept (BGO shield+PCuSn collimator)
- Can measure soft-γ polarization for sources ≥a few 10<sup>-2</sup> Crab, ≥10% polarized

100 ks simulation of NGC4945 starburst-Seyfert 2 composite galaxy a 0.1 0.01 Cts s<sup>-1</sup> keV<sup>-1</sup> 0-0 SGD SXS 04 0-2 10 100 Energy (keV)



#### Outline

- ASTRO-H science
- ASTRO-H development status
- Support to the European users' community



## European contribution to ASTRO-H

(ESA/SPC(2011)6)

- Cooperation agreement with JAXA approved by the 132<sup>nd</sup> ESA Science Programme Committee Meeting (February 2011):
  - Procurement of payload hardware element
  - Provision of technical support, especially on hardware contribution and cryogenic chain
  - Testing of detectors at European facilities
  - Sponsoring three ASTRO-H Science Team members
  - Provision of user support for the European community:
    - 1 fte at ESAC + 1 fte at JAXA + 2 fte at the University of Geneva (1.5 paid by Swiss funds)



#### ASTRO-H user support for the European community

(Audard et al., poster at this Symposium)

#### **Science Operations Centre (SOC) at ESAC**

- Handling of European Announcement of Opportunities, proposal technical evaluation, OTAC support
- Liaison with JAXA for the implementation of European proposals and cross-calibration observations
- Storage and dissemination of data
- Support to calibration and operations at JAXA

#### **Science Support Centre (ESSC) at UNIGE**

- Promotion in Europe (w/SOC)
- Expert knowledge on ASTRO-H instruments for European users
- Review user's documentation
- Training activities for European astronomers
- Contribute to the validation of calibration and data analysis software

Écogia, Versoix, Switzerland

Harrise

ESAC, Spain

<u>Current personnel:</u> Matteo Guainazzi (@JAXA) Peter Kretschmar Celia Sanchez Project Scientist: David Lumb (ESA-ESTEC)

<u>Current personnel:</u> Marc Audard Carlo Ferrigno Stephane Paltani





#### European ASTRO-H HelpDesk



| ESSC Home Helpdesk hom | e My Tickets Subr | nit a Ticket Knowledgebase |                            |                     |       | Eng    | lish (U.S.) 💲 |
|------------------------|-------------------|----------------------------|----------------------------|---------------------|-------|--------|---------------|
|                        |                   |                            |                            |                     |       |        |               |
| Account                | What can v        | What can we help you with? |                            |                     |       |        |               |
| My Profile             |                   |                            |                            |                     |       |        |               |
| A My Organization      | View Tickets      |                            |                            |                     |       |        |               |
| Preferences            |                   |                            |                            |                     |       |        |               |
| Change Password        | Ticket ID         | Last Update ~              | Last Replier               | Department          | Туре  | Status | Priority      |
| E Logout               |                   |                            |                            |                     |       |        |               |
|                        | SXS responses     |                            |                            |                     |       |        |               |
|                        | 12                | 09 May 2014 10:59 AM       | Matteo Guainazzi<br>(user) | Soft X-ray<br>Spect | Issue | Closed | Normal        |

# Operated by ESSC and (wo)manned by ESSC/SOC astronomers: http://astroh.unige.ch/helpdesk



#### ASTRO-H timeline

(Courtesy T.Takahashi, JAXA)





## The real thing ...

(Courtesy T.Takahashi, JAXA)

## EIC/MIC just completed!



