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A simple example
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PCA isolates and returns the different components of a signal, removing
some of the noise.

When we apply this to AGN spectra, it retrieves the different variable spectral
components, in a model-independent way, and we can match these to
predictions from simulations.
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Applying PCA to spectra
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To apply this to spectra, we divide the dataset into 10 ks spectra, then calculate
normalised residuals. These residual spectra are then fed into the code. This

removes the effects of the effective area of the detector, and prevents bias from
higher flux at low energies.
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Predictions

We can generate unique predictions for the PCs returned from different
spectral models, by simulating a set of fake spectra and allowing the model
components to vary.

These simulated components can then be compared with the components
returned from real data, to identify the cause of spectral variability in a
particular source.
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Sample

We have applied this method to a sample of ∼ 30 bright, variable AGN from
the XMM-Newton archive.

The method is highly dependent on the total number of counts, so we need
at least one complete orbit, preferably more. There are now many sources in
the archive with this much time, however!

We plan to extend this to other instruments, as well as looking at binaries. It
is interesting to note that there is no reason data from multiple observatories
could not be combined, if the instrumental response is properly accounted for.
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PCA of a powerlaw: 3C 273
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Left Fig shows the PCs returned from PCA of a simulation of a powerlaw,
varying in normalisation and photon index.

Right Fig shows the same thing, but for real data from 3C 273.
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PCA of absorption I: NGC 4395
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Left Fig shows the PCs returned from PCA of a simulation of a
partially-covered powerlaw, varying in covering fraction and continuum flux.

Right Fig shows the same thing, but for real data from NGC 4395.
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PCA of absorption II: NGC 1365
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Left Fig shows a simulation of varying column density, with a constant BB
component at low energies.

Right Fig shows the PCs from NGC 1365, where the low energy variability is
damped out by diffuse gas around the AGN.
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PCA of absorption III: Where are the warm absorbers?
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Many of the AGN in our sample show unambiguous evidence of warm
absorption, but we don’t see any robust signatures of ionized absorption
variability in our sample.
Two explanations for this: 1) PCA is optimised for broad-band spectral
variability, so narrow features get lost; 2) warm absorbers are generally less
rapidly variable than either the intrinsic source spectrum or the absorption
caused by BLR clouds etc.
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PCA of reflection I
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Left Fig shows the PCs returned from PCA of a simulation of a powerlaw,
varying in normalisation and photon index AND a blurred reflection
component, which is less variable than the powerlaw.

Right Fig (from Parker et al. 2014) shows the same thing, but for real data
from MCG–6-30-15...
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PCA of reflection II
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...and 1H 0707-495...
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PCA of reflection III
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PCA of reflection IV
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PCA of reflection V
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...and NGC 4051!
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PCA of reflection

All five of these sources are dominated by the same variability mechanism.

The method shows, in a completely model independent way, that there has to
be a spectral component responsible for both the soft excess and broad iron
line in these sources.

In all these sources (and several others) there is a strong pivoting term, which
can be well modelled with changes in the photon index.

In all cases, the soft excess and iron line is less variable than the continuum.
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Conclusions

PCA is a powerful tool for examining AGN variability. It returns completely
unbiased, model-independent spectral components, and can be used to
examine and quantify their variability.

An analysis of a large sample of bright, variable AGN has revealed a large
number of different variability patterns. These patterns can be matched to
the predictions from simulations to unambiguously determine the nature of
the variability in each source.
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Mrk 335
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Gallo et al., in prep.
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