

die Kunst

Über

in der Wissenschaft

The ultimate XMM extragalactic survey

M. Pierre, *CEA Saclay, France* F. Pacaud and the XXL consortium

25 deg² in CFHTLS-W1 2h23 -5d00 10 ks obs. (extension of the XMM-LSS field)

25 deg² in BCS-SPT 23h30 -55d00 10 ks obs. (extension of the XMM-BCS field)

In red: the new observations (80) $\Delta \alpha = \Delta \delta = 20'$ ($\Delta \alpha = \Delta \delta = 23'$ in the initial central survey)

Outline

1. Lessons from the XMM-LSS survey

2. An overview of XXL

3. Preliminary results

4. A new method for analysing X-ray cluster surveys

1. Lessons from XMM-LSS a pilot survey (2000-2010)

36 referred publications, 7 PhD theses

The XMM-LSS field

- 11 deg2 paved with 10-20 ks and including the SDS : 99 observations separated by 20'
- Optical coverage by the CFHTLS
- IRAC + MIPS survey from SWIRE
- Plus many others (VLA, GMRT, Integral, ...)

XMM-LSS clusters of galaxies and their optical counterpart (CFHTLS)

1) An unambiguous selection function

Cluster cosmology requires a handle on dn/dM (z), but:

- Cluster masses are not directly observable
- − → Some scaling relations between L, T and M are needed

 To model the observed dn/dM(z) it is highly desirable to have a purely X-ray selected cluster sample
 = ab initio modeling

Clusters are extended sources → a 2-D selection function
 Pacaud et al 2006, 2007

Not a flux limit !

2 clusters with same flux

detected not detected

Detection rates from extensive simulations

Class 1 sample

Pacaud et al 2006

2) Selction effects are critical in the determination of the scaling relations...

Pacaud et al 2007

Allen, Evrard, Mantz 2011

3) Distant clusters

- 10 ks XMM are enough to detect a Coma cluster at z = 2.
- 1-2 C1 clusters per deg² beyond z>1
- Clusters at z>1.2 are readily identifiable
 - extented sources without counterpat in the I band
 - always have a counterpart in IRAC!

A distant candidate at z ~ 1.5

 ID_{1762}

A distant candidate at z ~ 1.5

 ID_{1762}

I 3.6 μm 4.5 μm

2. XXL : an overview

Website http://irfu.cea.fr/xxl

The XXL survey an XMM Very Large Programme

- Builds on the XMM-LSS experience
- 2 areas of 25 deg² each, paved with 10 ks XMM observations
 - 3Ms allocated in December 2010
 - Some 3.9 Ms of already existing data
- Design driven by: the equation of state of the dark energy from clusters of galaxies
- Hot topics for AGNs and clusters and XRB

The cosmological quantities

• ξ : 3D correlation function

 \Rightarrow ξ increases the contraints by a factor of ~ 2

Predictions for XXL = 50 deg²

Table 7. Cosmological constraints. Survey configuration A2 - 50 deg² 1/4 depth (10 ks XMM exposures) $(1-\sigma \text{ errors on } w_0 / w_a)$

Selection	Redshift range	dn/dz + Planck	dn/dz + ξ + Planck
C1 (pessimistic)	0 < z < 1	2.77 / 5.98	0.97 / 3.08
C2 (optimistic)	0 < z < 2	1.14 / 2.44	0.55 / 1.70

Table 8. Cosmological constraints from clusters following the DETF survey designs1- σ errors on w_0 / w_a Ref.StagePessimisticOptimisticDark Energy Task Force
*clusters*III0.70/2.110.26/0.77IV0.73/2.180.24/0.73

XXL

Pierre et al 2011

w₀

AGN 'hot topics'

Specific to XXL

Some 500 X-ray AGNs/deg2

- Large Scale Structure an environmental studies
- Distant / Exotic AGNs
- The statistics of lensed QSOs

Cluster 'hot topics'

Specific to XXL

- The DE equation of state
- The group population at z~0.3-0.5
- Mass measurements (X, optical, lensing, IR, S-Z)
- Census of the 1<z<2 clusters
 - volume : 0.6 Gpc³
 - comparable to the SDSS within $0 < z < 0.3 : 1.4 \text{ Gpc}^3$

Focus on clusters for the rest of the talk

Legacy, from 2016 on

- Individual source catalogues
- Multi- λ catalogues
- Photo-z and spectro-z
- Special efforts on:
 - Requirements for band merging
 - Photometric uniformity

Current status

- A large international consortium: some 100 Co-Is
 - 19 countries
 - ~ 1/3 postdoc
 - 12 PhD students
- XMM AO-10 observation performed between May 2011 and May 2013. All reduced (F. Pacaud)
- Good overall data quality:
 - Less than 20% of the area significantly affected by flares
 - 20 pointings will be re-observed in 2014
- **Detection statistics,** to date:
 - Some 400 clusters
 - Some 21 500 (10 000) AGNs detected in the soft (hard) band

The associated imaging programmes

Instrument/Programme	Field	Bands	Coverage (for survey-type)	Туре	Status
MegaCam at CFHT / CFHTLS	N	u,g,r,i,z	larger than XXL	E-S	С
HSC at Subaru	Ν	g,r,i,z,y	larger than XXL	PI-S	OG
Spitzer / SWIRE	N	3.6, 4.5, 5.8, 8.0, 24, 70, 160 μm	10 deg ²	E-S	С
Spitzer	Ν	3.6, 4.5, 5.8, 8.0 µm	16 deg ²	PI-S	С
VISTA VIDEO	Ν	Z, Y, J, H, Ks	4.5 deg^2	E-S	OG
WIRCAM at CFHT / MIRACLES	Ν		_	E-S	С
WIRCAM at CFHT	Ν	J, H, Ks		PI-S	OG
HAWKI at VLT/ clusters	N+S			PI-T	OG
HERSCHEL HERMES	Ν	70, 100, 160, 250, 350, 500 μm	9.3 deg^2	E-S	С
Blanco Telescope / BCS	S	g,r,i,z	larger than XXL	PI-S	С
DES	S	g,r,i,z,y	larger than XXL	E-S	OG
deep DECam survey	S	g,r,i,z	25 deg ²	PI-S	С
VISTA	S	K	larger than XXL	E-S	OG
Spitzer / SSDF	S	3.6, 4.5, 5.8, 8.0 µm	larger than XXL	PI-S	С
GMRT	Ν	240, 619 MHz		PI-S	OG
VLA/NVSS	Ν	1.4 GHz	larger than XXL	E-S	С
CARMA / clusters	Ν	30, 90 GHz	_	PI-T	OG
ATCA	S	2.1 MHz		PI-S	
Molonglo/SUMSS	S	843 MHz	larger than XXL	E-S	С
SPT - SPT _{pol}	S	90, 150, 220 GHz	larger than XXL	E-S	OG
ACT - ACT _{pol}	N+S	150, 220 GHz	larger than XXL	PI-S	OG

Table 2. Imaging and radio data available in the XXL fields as by end of 2013. The $\langle Type \rangle$ column indicates the source of the data, E (external), PI (XXL PI), and whether the observations are conducted in survey mode (S) or target XXL sources (T). The $\langle Status \rangle$ column indicates whether the observations are completed (C) or on-going (OG). More detailed information, maps and references are available at http://xxlmultiwave.pbworks.com.

Details at http://xxlmultiwave.pbworks.com

The associated spectroscopic programmes

Instrument/Programme	Field	Resolution	Coverage (for survey-type)	Туре	Status
VIMOS / VIPERS	N	R=200	16 deg ²	E-S	OG
AAOmega / GAMA field G02	N	R=1400	23.5 deg ² overlap with XXL	E-S	OG
SSDS DR9	N	R=1300-3000	larger than XXL	E-S	С
WHT / detailed velocity mapping of groups	N+S	R=800		PI-T	OG
NTT / clusters	N+S	R=300		PI*-T	OG
FORS2 / clusters	N+S	R=600		PI*-T	OG
AAOmega / clusters + AGNs	S	R=1400	25 deg ²	PI-S	OG

Table 3. Spectroscopic data available in the XXL fields as by end of 2013. The <Type> column indicates the source of the data, E (external), PI (XXL PI), and whether the observations are conducted in survey mode (S) or target XXL sources (T). The <Status> column indicates whether the observations are completed (C) or on-going (OG). The * stands for ESO Large Programme. More detailed information, maps and references are available at http://xxlmultiwave.pbworks.com.

3. XXL : preliminary results

Current sensivity maps

- A010 observations (3 Ms) were performed between May 2011 and May 2013
- In total: 331 sky positions
- Overall good quality (less than 20% 'bad' observations)
- AO13 allocation (260 ks) to fill the 'gaps' in the sensitivity maps
 - done (
 - still to be done

XXL-N

XXL-N

XXL-S

XXL-S

Current cluster redshift distribution

Redshifts from our own ESO LP, WHT, AAT campaigns and GAMA

First publications... soon

- Samples of **brightest 100 clusters** and **1000 AGNs**
 - Fluxes, redshifts, luminosities, masses, SEDs
 - Cluster evolution, cosmology and AGN LSS
- First XXL publication:

The most distant X-ray/S-Z cluster detected at : z = 1.9 (*Mantz et al 2014*)

 In parallel, X-ray/optical cluster matching using the SDSS and the XMM archive clusters (XCLASS)
 Sadibekova et al 2014 => increase low-z statistics

Evolution of the outer slope with temperature

 Partial correlation attributes the correlation to be due to the temperature (Spearman rank test gives a null probability of ~ 0.01)

Talk by Jessica Democles Wednesday afternoon

$L_X - kT$ Relation (selection effects corrected)

Ŋ at z=0. of a super group Discovery

XMM + CARMA z^{\sim} 1.9

SZ Effect of a z = 1.9 Galaxy Cluster

Figure 1. Left: Short-baseline (uv radii < $2k\lambda$) 30 GHz map of XLSSU J0217-0345 after modeling and subtracting point sources and applying the CLEAN algorithm. The position of the brighter point source in Table 2 is indicated by the "×" (the other lies outside the image). White contours show the extended X-ray emission associated with the cluster detection. The gray ellipse in the lower-left corner shows the FWHM synthesized beam. Right: iJK image, with X-ray (white) and SZ (blue) contours overlaid. The SZ contours correspond to -2.5, -3.5, -4.5, and -5.5 times the rms noise level of the short-baseline map. Galaxies with photometric redshifts in the range 1.7 < z < 2.1 are circled in green.

Associated numerical simulation programme

- Test the impact of cluster physics (luminosity, size) on the selection function
- Test the realism of the input cluster physics
- Test combined cluster mass measurements (X-ray, optical, S-Z, lensing)

Projected XXL simulated lightcones

6.22e-09

2.51e-08

5.01e-08

6.96e-10

Evrard & Co N-Body + template

Quick and very large realisations

Folded into an XMM image simulator: PSF, BKG, energy, detector topology

McCarthy & Co Hydrodynamic

Refined gaz +AGN physics

Displayed images: 1x2 deg² cut-out

'Real simulated' XMM moscaic

C1 clusters C2 clusters

Detected clusters

C2 clusters

Faccioli, Sauvageot et al in prep

3. A new method for analysing X-ray cluster surveys

N. Clerc, M. Pierre, F. Pacaud, T. Sadibekova, 2012 MNRAS, 423, 3545 N. Clerc, T. Sadibekova, M. Pierre, F. Pacaud, J.-P. Le Fevre, C. Adami, B. Altieri, I. Valtchanov 2012 MNRAS 3545, 3583

Life was simpler in the past...

THE ROSAT DEEP CLUSTER SURVEY: THE X-RAY LUMINOSITY FUNCTION OUT TO z = 0.8

PIERO ROSATI,^{1,2,3,4} ROBERTO DELLA CECA,⁵ COLIN NORMAN,² AND RICCARDO GIACCONI¹ Received 1997 August 7; accepted 1997 October 28; published 1997 November 14

ABSTRACT

We present the X-ray luminosity function (XLF) of the *ROSAT* Deep Cluster Survey sample over the redshift range 0.05–0.8. Our results are derived from a complete flux-limited subsample of 70 galaxy clusters, representing the brightest half of the total sample, which have been spectroscopically identified down to the flux limit of 4×10^{-14} ergs m⁻² s⁻¹ (0.5–2.0 keV) and have been selected via a serendipitous search in *ROSAT* PSPC pointed observations. The redshift baseline is large enough that evolutionary effects can be studied within the sample. The local XLF ($z \le 0.25$) is found to be in excellent agreement with previous determinations using *ROSAT* All-Sky Survey data. The XLF at higher redshifts, when combined with the deepest number counts constructed to date ($f > 2 \times 10^{-14}$ ergs cm⁻² s⁻¹), reveals no significant evolution at least out to z = 0.8, over a luminosity range of 2×10^{42} to 3×10^{44} ergs s⁻¹ in the 0.5–2 keV band. These findings extend the study of cluster evolution to the highest redshifts and the faintest fluxes probed so far in X-ray surveys. They complement and do not necessarily conflict with those of the *Einstein* Extended Medium-Sensitivity Survey, leaving open the possibility of negative evolution of the brightest end of the XLF at high redshifts.

Subject headings: cosmology: observations - galaxies: clusters: general - X-rays: general

We adopt Ho= 50 qo = 1/2

1998 ApJ 492, L21 355 citations

The magic triangle

Modern cluster cosmology

• Usual route:

Flux, Temp => Mass => dn/dM/z => compare with theory Masses - and scaling relations - must be computed for each tested cosmology

• Quick way:

Work directly in the observed parameter space

Predicted X-ray colour-magnitude diagrams
Fit simultaneously:

cosmology - cluster evolution - selection effects

- CR in [0.5-2] keV
- HR = [1-2]/[0.5-1]

- ~ Magnitude
- ~ Colour

The CR-HR distribution

[1-2] keV / [0.5-1] keV hardness ratio (HR)

Evaluating the HR-CR method

Clerc et al 2012a, 2012b

Implement realistic measurement errors

Plugging redshift information into the HR-CR diagram

→ 3rd dimension to the diagram

With redshifts (photo-z are sufficient)

CONCLUSION

XXL = DE (almost) now... !
+ many other things

XMM is a wonderful survey instrument!

Very exciting coming 5 years:

In addition to DE and AGN science:

XXL will provide a wonderful legacy data set over 50 deg2 to:

- Cross- check the **optical-IR** \Leftrightarrow **X-ray cluster selection functions**
- **Evaluate the biases** of the different cluster approaches to cosmology
 - X-ray
 - Optical
 - Lensing
 - S-Z
 - ➔ Perform the combined cosmological analysis
- Provide a reference/calibration area for the next generation surveys
 - eRosita
 - Euclid
 - LSST

The END