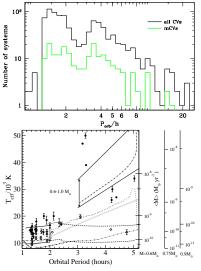
Constraints on the space density of CVs and implications for evolution models

Magaretha Pretorius

University of Oxford


Collaborators: K. Mukai, C. Knigge, A. Schwope

The X-ray Universe, Dublin, 17 June 2014

Very basic basics of CV evolution

Angular momentum loss drives mass transfer and orbital evolution

 \Rightarrow *P*_{orb} is an indication of the evolutionary state of a CV **Disrupted MB model**

Townsley & Gänsicke 2009

 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \xrightarrow{} \tau_{GR} >> \tau_{MB}$

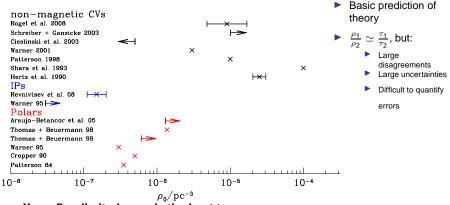
How about the mCVs?

distribution

- also form in Common Envelope
- Also lose orbital AM; evolve in Porb

motivated by non-magnetic CV Porb

2 AML mechanisms: GR and MB. MB operates only at $P_{orb} \gtrsim 3 \text{ h}$


- The period histogram is similar
- ⇒ the same except for needing to form a magnetic WD?

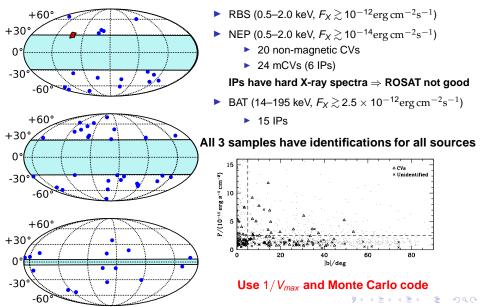
No MB in polars?

- B-field stops the stellar wind escaping
- Observational support: low T_{eff} at long-P_{orb} (maybe at all periods)
- $\Rightarrow \tau_{GR} \sim a^{-4} \Rightarrow \text{very long for long-} P_{orb}$ polars

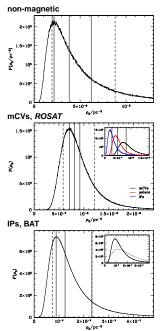
Why/how to measure CV space density (again)?

Existing CV space density measurements:

X-ray flux-limited sample the best to use:


► No volume-limited sample and CVs differ a lot in luminosity ⇒ Selection effects

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので


- Systematic errors probably dominate
- \Rightarrow Need a simple, well-defined sample to deal correctly with all errors

Samples and calculation

3 complete X-ray flux-limited surveys (from ROSAT and BAT):

Best estimate space densities

Simulation gives a PDF of ρ

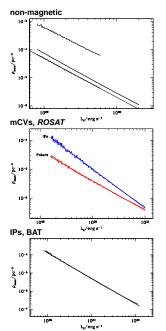
(Do it separately for different samples for sub-types ρ)

non-magnetic CVs: $ho_0 = 4^{+5}_{-2} \times 10^{-6} \, {\rm pc}^{-3}$

mCVs:

- All mCVs: $\rho_0 = 8^{+4}_{-2} \times 10^{-7} \, \mathrm{pc}^{-3}$
- For polars and IPs separately: $\rho_{polar} = 5^{+3}_{-2} \times 10^{-7} \text{ pc}^{-3}$

50% duty cycle lowstates doubles $\rho_{\it polar}$


Long-period IPs from BAT:

 $ho_{\it IP,\it Ip} = 1^{+1}_{-0.5} \times 10^{-7} \, {\rm pc}^{-3}$

- Low precision, but reliable
- Measurements apply only to detected population

Pretorius & Knigge (2012); Pretorius, Knigge & Schwope (2013); Pretorius & Mukai (2014)

Upper limits on hypothetical fainter populations

Non-detections constrain sizes of undetected populations

- Assume all systems in the 'hidden' population have the same (faint) L_X
- Find ρ that predicts 3 detected faint systems (detecting 0 is then a 2-σ result)
- ► Non-magnetic: $\rho < 4.82 \times 10^{-5} (L_X / 10^{29} \text{ erg s}^{-1})^{-1.48} \text{ pc}^{-3}$ $\Rightarrow \rho = 10^{-4} \text{ pc}^{-3} \text{ requires } L_X \lesssim 8 \times 10^{28} \text{ erg s}^{-1}$ (that's pretty faint)
- IPs:

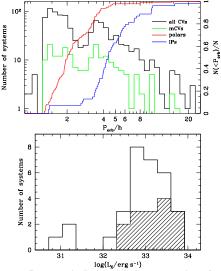
$$\rho < 1.02 \times 10^{-5} (L_X/10^{30} \,\mathrm{erg \, s^{-1}})^{-1.35} \,\mathrm{pc^{-3}}$$

Polars:

$$ho < 4.01 imes 10^{-6} (L_X / 10^{30} \, {\rm erg \, s^{-1}})^{-1.03} \, {\rm pc^{-3}}$$

Iong-period IPs, BAT band:

 $\rho < 5.15 \times 10^{-6} (L_X/10^{31}\,{\rm erg\,s^{-1}})^{-1.40}\,{\rm pc^{-3}}$


◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Pretorius & Knigge (2012); Pretorius, Knigge & Schwope (2013); Pretorius & Mukai (2014)

Evolutionary relationship between IPs and polars

Porb histogram of mCVs similar to non-magnetic CVs

But almost all IPs are long-Porb, almost all polars short-Porb

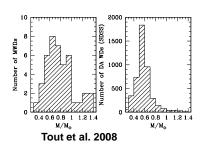
- Short-period polars can form at short period. But where do long-period IPs go
- IP might synchronize when \dot{M} drops at 3 h

Do IPs evolve into polars?

(e.g. Chanmugam & Ray 1984)

- ► Would imply $\rho_{polar,sp}/\rho_{IP,Ip} \simeq \tau_{GR}/\tau_{MB}$ (expect theoretically $\tau_{GR}/\tau_{MB} \gtrsim 5$)
- $\frac{\rho_{polar,sp}}{\rho_{IP,Ip}} = 3^{+3}_{-1}$ (Ratio $\gtrsim 10$ within 2- σ)

Do IPs just stay IPs? (e.g. Norton et al. 2008)


Faint IP population:

- $10^{-7} \,\mathrm{pc}^{-3} < \rho_{faint} < 5 \times 10^{-6} \,\mathrm{pc}^{-3}$
- Similar in size to short-period polar population

Data can't distinguish these 2 options for now (but best bet probably a combination)

Intrinsic fraction of magnetic WDs

Formation of mWDs to do with binary evolution?

- If only stellar evolution, mWD fraction same in
 - ▶ isolated WDs (~10%; Kawka et al. 2007)
 - CVs (~20% of known CVs; Ritter & Kolb)
 - detached WD/red dwarf binaries (no mWDs)
- Maybe mWDs all form through CE evolution (Tout et al. 2008)
 - ► Smaller final orbital separation ⇒ stronger B-field
 - Single mWDs result of merger; ones that don't merge mCVs
 - \Rightarrow Real intrinsic difference in fraction of mWDs

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Are mWDs really more common in CVs than in the field?

- mCVs: $8^{+4}_{-2} \times 10^{-7} \, \mathrm{pc}^{-3}$
- ▶ non-magnetic CVs: $4^{+6}_{-2} \times 10^{-6} \, \mathrm{pc^{-3}}$ (Pretorius & Knigge 2012)

• So,
$$\log(f_{mCV}) = -0.8^{+0.3}_{-0.4}$$
, i.e $f_{mCV} \simeq 16\%$

 only good to within about a factor of 2 (perhaps systematic bias as well)

\Rightarrow Fractions are the same, within the errors

X-ray source populations

Do IPs dominate Galactic X-ray Source Populations?

Chandra GC survey:

- ▶ 2° × 0.8°
- $\simeq 9000 \text{ sources}$ ($L_X \gtrsim 10^{31} \text{ ergs}^{-1}$ at 0.5–8.0 keV)
- Uncertain source classification

-

- X-ray sources in the Galactic Centre: ρ_{X,GC} ~ 6 × 10⁻⁴ pc⁻³
- stellar density 1590× higher than solar neighborhood
- 1 X-ray source per ~100,000 stars in the GC
- our ρ_{IP} implies 1 IP per ~200,000 stars in solar neighborhood

 \Rightarrow Consistent, because numbers are only good to withing a factor of ${\sim}2$

IPs can account for most of the X-ray source population in the Galactic Centre (also in the Milky Way as a whole, in globular clusters)

Conclusions

- Flux-limited X-ray samples maybe the best way to measure it
- We use the complete samples from RBS and NEP, construct one from Swift/BAT
- non-magnetic CVs: $4^{+6}_{-2} \times 10^{-6} \, \mathrm{pc}^{-3}$
- mCVs: $8^{+4}_{-2} \times 10^{-7} \, \mathrm{pc}^{-3}$ (for detectable systems)
 - ▶ IPs and polars separately: $\rho_{polar} = 5^{+3}_{-2} \times 10^{-7} \text{ pc}^{-3}$ and $\rho_{IP} = 3^{+2}_{-1} \times 10^{-7} \text{ pc}^{-3}$
- Some implications for evolution of CVs
 - ▶ Non-magnetic: $\rho_0 = 10^{-4} \, {\rm pc}^{-3}$ implies $L_X \lesssim 8 \times 10^{28} \, {\rm erg \, s}^{-1}$ for dominant population
 - ρ_{IP} high enough to explain observed number of bright ($L_X \gtrsim 10^{31} \, {\rm erg s^{-1}}$) Galactic Centre X-ray sources
 - Fraction of strongly magnetic WDs not clearly higher in CVs than in the single WD population
 - $\rho_{polar,sp}/\rho_{IP,Ip}$ consistent with long- P_{orb} IPs becoming short- P_{orb} polars. Also possible that short- P_{orb} IP population is big enough (IPs evolve into IPs), despite very small observed number

► To improve on this, we need similar but deeper CV samples with good distances ⇒ Gaia; also eROS/TA and further follow-up of BAT sources