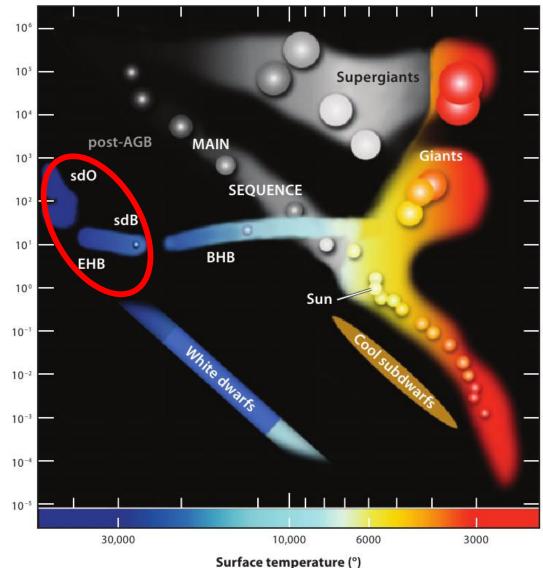


Hot-subdwarf stars: a new class of X-ray sources

Nicola La Palombara¹

S. Mereghetti¹, A. Tiengo^{1,2,3}, P. Esposito¹

¹INAF - IASF Milano, ²IUSS Pavia, ³INFN Pavia

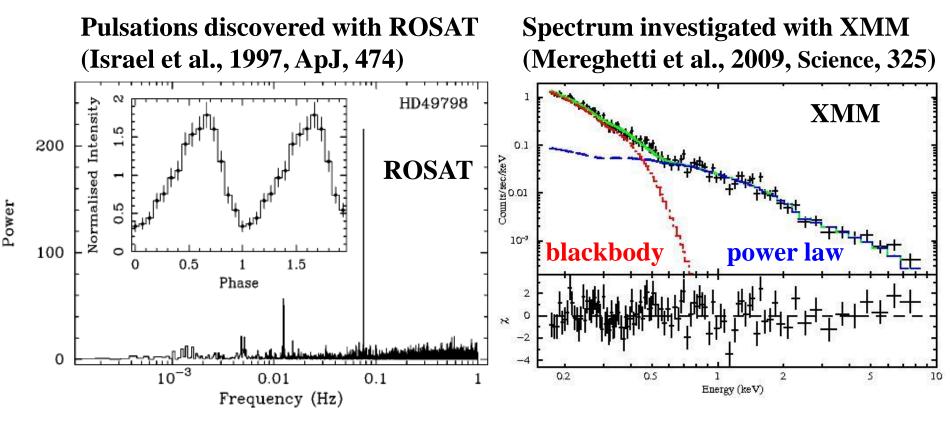


The X-ray Universe 2014 – Dublin – June 16-19, 2014

Hot subdwarf stars:

- Evolved low-mass stars with burning He core and thin H envelope (Heber 2009)
- Spectrally classified in: sdO (T > 40,000 K)sdB (T < 40,000 K) (Hirsch et al. 2008)
- Luminosity (compared to the sun) • Many in close binary systems possible formation via mass loss through **binary evolution**

Heber 2009, ARAA, 47



Chandra X-ray

Observatory

HD 49798: the first sdO star detected in X-rays

• Pulsed X-ray emission (P_{orb} = 13.2 s)

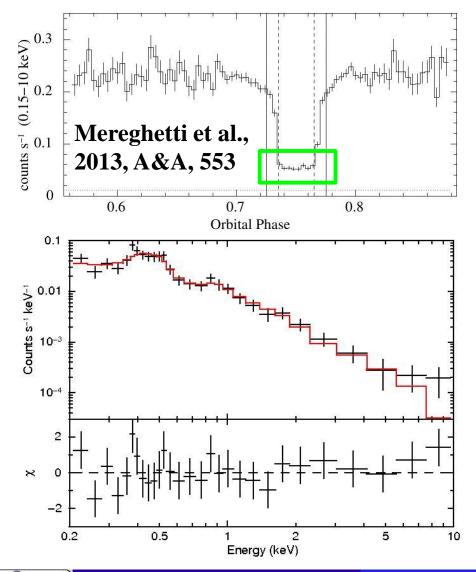
Soft X-ray spectrum

Chandra X-ray

Observatori

IASF

 \Rightarrow the companion is a **WD**

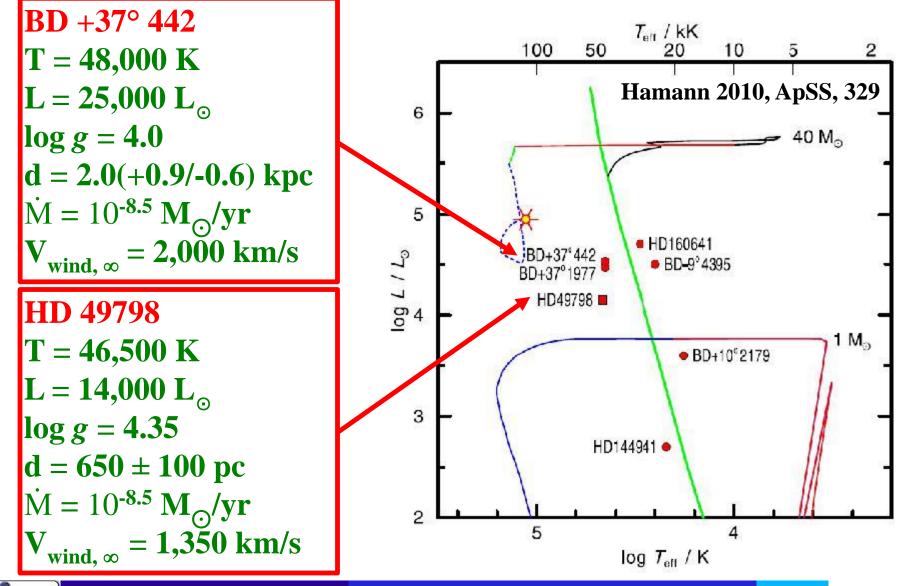

• Low X-ray luminosity ($L_X \sim 10^{32} \text{ erg/s}$)

The X-ray Universe 2014

HD 49798

X-ray emission during WD eclipse

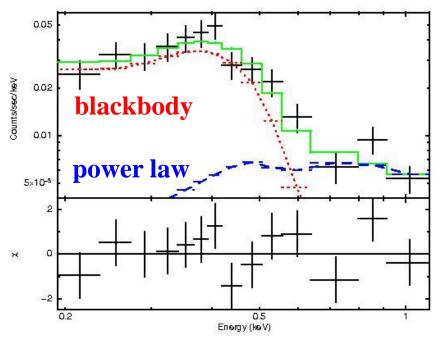
- PL + 2 narrow lines @ 0.43 & 0.5 keV (N VI & N VII)
 OR
- 3 thermal plasma components (kT = 0.14, 0.7 & 5 keV) with proper He & N abundances
- $L_X \simeq 3x10^{30} \text{ erg/s} \Rightarrow L_X/L_{bol} \sim 10^{-7}$: consistent with O-type stars

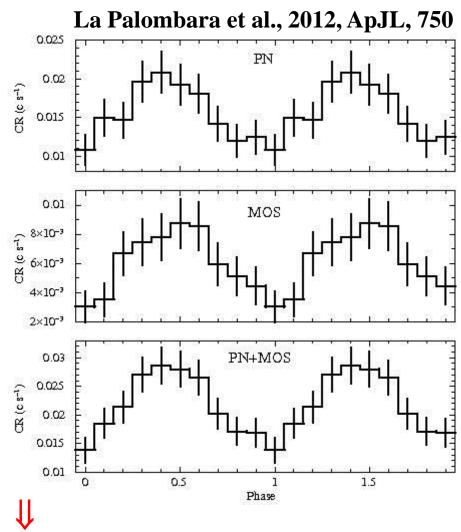

first detection of intrinsic X-ray emission from a hot subdwarf star

Chandra X-ray Observatory

Contraction of the second

The Extreme Helium Star BD +37° 442




N. La Palombara – IASF Milano

Contraction of the second

Discovery of pulsed X-ray emission

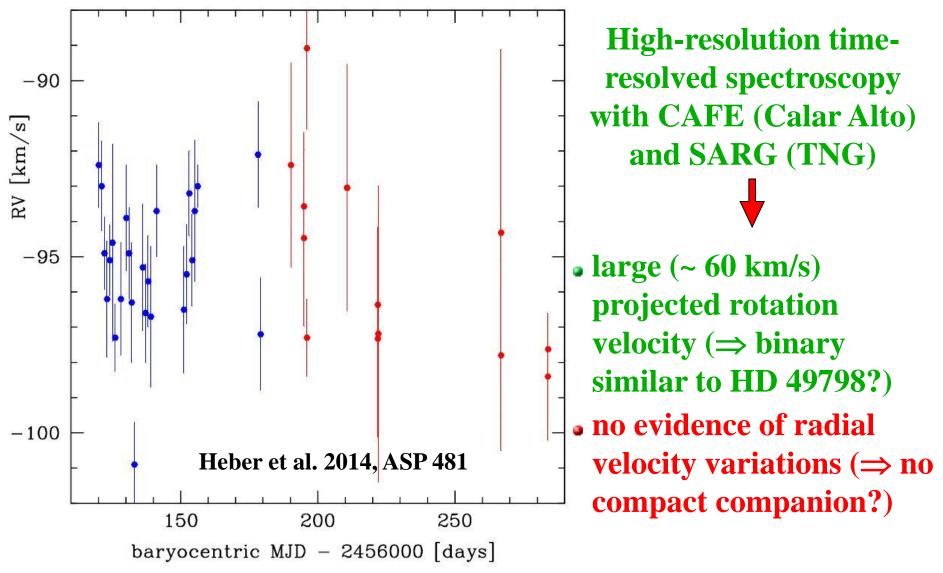
Soft X-ray spectrum
P = 19.156 ± 0.001 s (3 σ c.l.)
Sinusoidal profile
Pulsed Fraction = 31 ± 4 %

X-ray emission from a <u>compact</u> companion?

N. La Palombara – IASF Milano

The X-ray Universe 2014

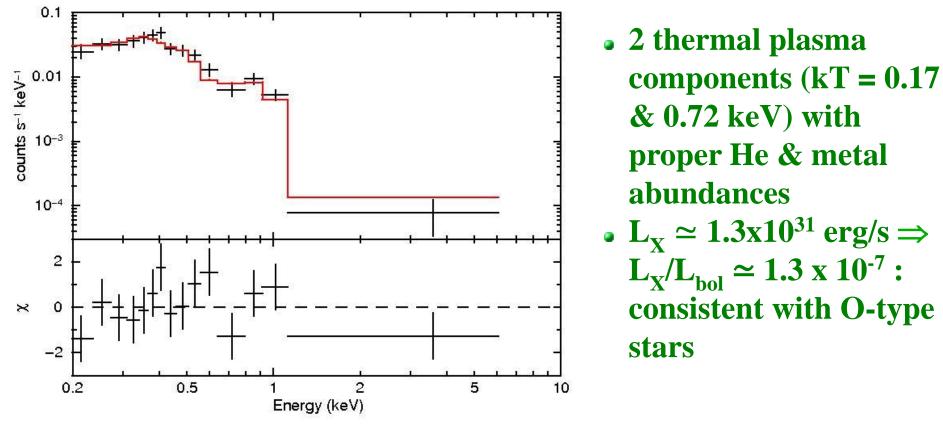
6/18 INAF


BD +37° 442

7/18

INAF

Optical spectroscopy of BD +37° 442



INAF

Alternative for the X-ray emission of BD +37° 442

X-ray emission comparable to that of HD 49798 during eclipse

intrinsic X-ray emission from the sdO star itself?

X-ray observation of other sdO stars

- First systematic search of X-ray emission from a complete flux-limited sample of sdO stars:
- snapshot observations (4 ks) with Chandra HRC-I of a sample of 19 sdO stars with V < 12 and d < 1 kpc
- follow-up observations of detected sources with XMM-Newton

Approved for AO14 and performed in 2013

Name	d (pc)	V
BD+75° 325	150-280	9.55
BD+25° 4655	100 - 130	9.69
BD-22° 3804	230-440	10.03
BD+37° 1977	2500	10.15
BD+39° 3226	220-430	10.18
$BD-03^{\circ} 2179$	-	10.33
BD+28° 4211	85-120	10.51
CD-31 4800	220-400	10.52
BD+48° 1777	120-250	10.74
LS V $+22$ 38	-	10.93
LS IV -12 1	250 - 550	11.16
Feige 34	85-265	11.18
LSE 153	150 - 350	11.36
LSS 1275	< 1000	11.37
LSE 263	150 - 350	11.55
BD+18° 2647	600 - 1250	11.63
LSE 21	50	11.64
LS IV $+10$ 9	130 - 330	12.05
LS I $+63$ 198	-	12.80

X-ray observation of other sdO stars

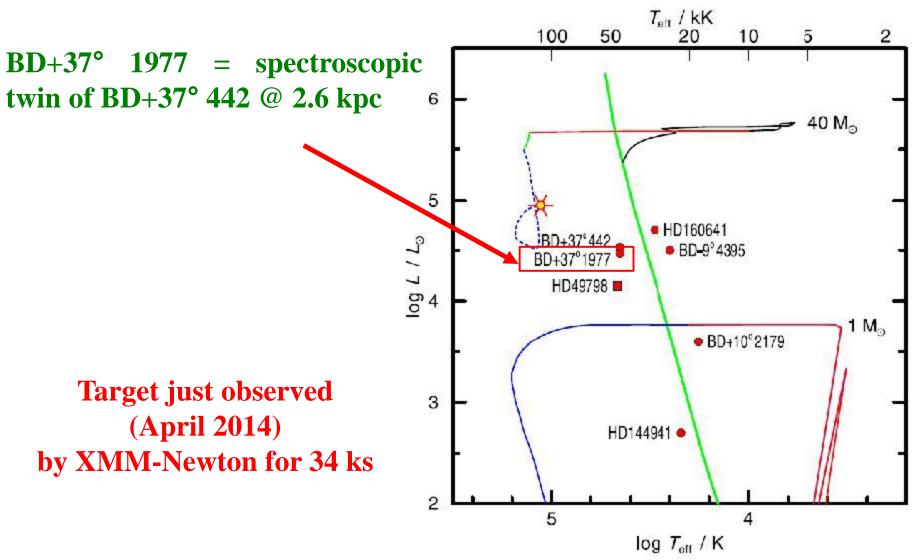
- First systematic search of X-ray emission from a complete flux-limited sample of sdO stars:
- snapshot observations (4 ks) with Chandra HRC-I of a sample of 19 sdO stars with V < 12 and d < 1 kpc
- follow-up observations of detected sources with XMM-Newton

Approved for AO14 and performed in 2013

Three new X-ray detections: • 1 luminous sdO (BD+37° 1977) • 2 compact sdOs (BD+28° 4211 & Feige 34)

La Palombara et al., 2014, A&A, 566

Name	d (pc)	V
BD+75° 325	150-280	9.55
BD+25° 4655	100 - 130	9.69
BD-22° 3804	230-440	10.03
$BD+37^{\circ} 1977$	2500	10.15
$BD+39^{\circ} 3226$	220-430	10.18
$BD-03^{\circ} 2179$	-	10.33
$BD+28^{\circ} 4211$	85-120	10.51
CD-31 4800	220-400	10.52
BD+48° 1777	120 - 250	10.74
LS V $+22$ 38	-	10.93
LS IV -12 1	250 - 550	11.16
Feige 34	85-265	11.18
LSE 153	150 - 350	11.36
LSS 1275	< 1000	11.37
LSE 263	150 - 350	11.55
BD+18° 2647	600 - 1250	11.63
LSE 21	50	11.64
LS IV $+10$ 9	130 - 330	12.05
LS I $+63$ 198	-	12.80


The X-ray Universe 2014

10/18 INAF

INAF

XMM-Newton observation of BD+37° 1977

ASF

Chandra X-ray

Observatory

N. La Palombara – IASF Milano

BD +37° 1977

XMM-Newton observation of BD+37° 1977

X-ray detected sdOs

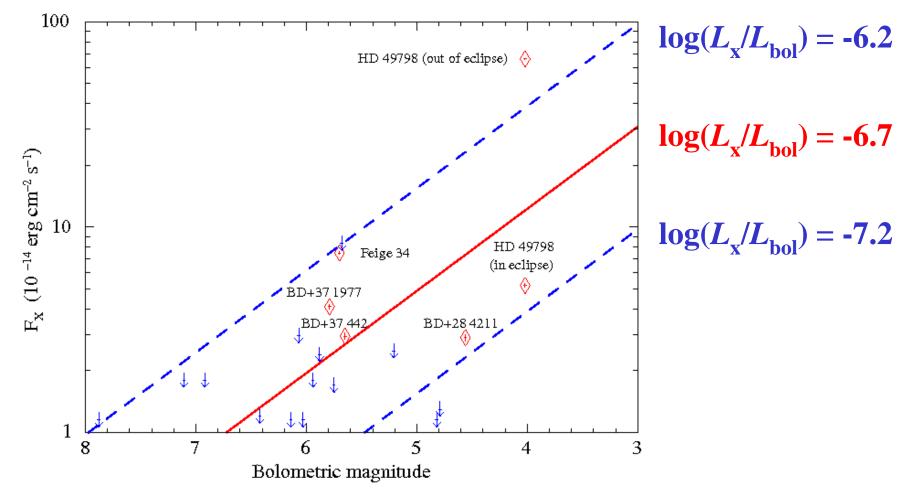
13/18

INAF

X-ray emission of detected luminous sdO stars

Spectra modeled with multi-temperature thermal-plasma components (*mekal*), as in normal O-type stars (Nazé 2009):

	kT1	kT2	kT3	$\log(L_{\rm x}/L_{\rm bol})$
	(keV)	(keV)	(keV)	
HD 49798	0.14	0.71	5 (fix)	-7.1
BD +37° 442	0.17	0.72	-	-6.7
BD+37° 1977	0.12	0.84	-	-6.5


good spectral fit with 2/3 components
 log(L_x/L_{bol}) in agreement with the typical range -6.7(±0.5) ↓
 X-ray emission due to shocks in the stellar wind

Chandra X-ra

INAF

(Upper Limit) X-ray flux of the observed sdO stars

intrinsic emission possible for almost all the observed sdO stars

Chandra X-ray

Observatory

sdB stars

15/18

INAF

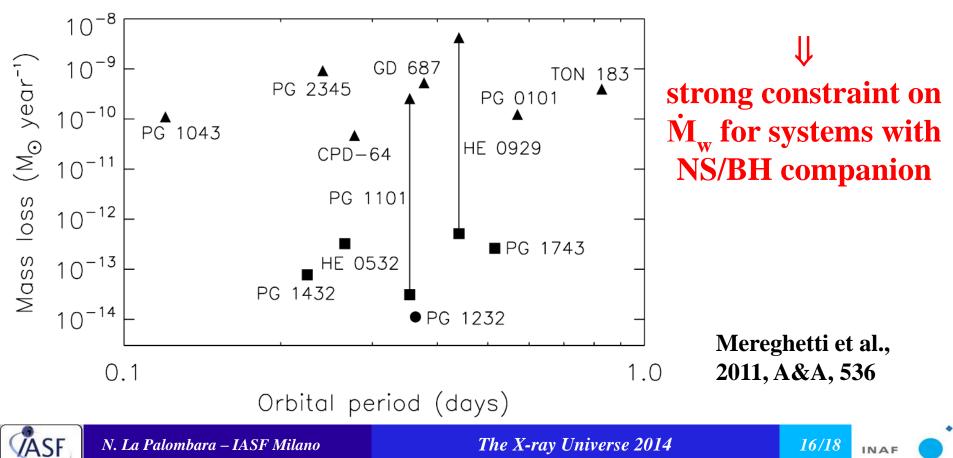
Contraction of the second

Swift observations of binary sdB stars

Prediction of current stellar evolutionary models (e.g. Han et al., 2002; Han et al., 2003): most early-type subdwarf stars in close binary systems have compact companions (mainly WDs, but also NSs or BHs in some cases)

- hypothesis difficult to test directly with optical observations
- X-ray observations can be a useful tool to identify systems containing a compact object (through either thermal emission from or matter accretion onto the compact-star surface)

X-ray survey of a sample of candidate binary sdB star with a compact companion


Chandra X-ray

Observatorv

sdB stars

Swift observations of binary sdB stars

- optical mass function + inclination (estimated assuming locked rotation) ⇒ lower limit on the companion mass
- lower limit exceeding the masses of late MS stars ⇒ compact companion (Geier et al., 2010)

INAF

XMM-Newton observation of CD -30° 11223

Eclipsing system sdB+WD (Vennes et al. 2012; Geier et al. 2013): • $P_{orb} = 1.2 h \text{ (shortest } P_{orb} \text{ for a sdB+WD system)}$ • $M_{WD} = 0.74 M_{\odot}$ • $M_{sdB} = 0.47 M_{\odot}$ target observed for 50 ks by XMM source undetected, with luminosity upper limit = 1.5×10^{29} erg/s $\dot{M}_{w} < 3 \ge 10^{-13} M_{\odot}/y$ much lower than for Swift sources (Mereghetti et al., 2014, MNRAS, 441)

Chandra X-ray

N. La Palombara – IASF Milano

Conclusions

- The first X-ray observations of hot-subdwarf stars have shown that:
- sdO stars are an established class of X-ray sources, where X-ray emission can have two different origins:
 accretion onto a compact companion
 internal shocks in the stellar wind
- 2) sdB stars are undetected at X-rays so far: • no intrinsic emission for single stars (lower \dot{M}_w)
- Binary systems with compact objects are useful to:
 confirm the evolutionary models
 probe the properties of the subdwarf wind

