

Quasi-Periodic Oscillations: Energy Dependent Time Lags

Ranjeev Misra

Inter-University Center for Astronomy and Astrophysics (IUCAA) Pune, India

Soma Mondal (Taki College, India): Misra & Mondal, 2013, ApJ

The X-ray Universe 2014 Dublin, Ireland, June 2014

- Quasi-periodic Oscillations (QPOs) are observed in X-ray binaries in a wide range of frequencies from milli-Hz – kHz.
- There are several models for the dynamic origin of the different kinds of QPOs but there is no consensus on which of them is correct.

- A number of QPOs exhibit energy dependent time lags.
- These time lags between photons of different energies can be used to constrain the radiative process and provide insight into the nature of the QPOs

Vaughan et al. 1998; Kaaret et al. 1999 de Avellar et al. 2013 Barret 2013

Ranjeev Misra, IUCAA, Pune, India.

- Time delay due to Compton scattering. High energy photons scatter more times and hence a delay is introduced.
- Time delay due to reverberation i.e.
 reflection features delayed with
 respect to the continuum.

Comptonization can explain soft lags!! (Lee, Misra & Taam 2001, Kumar & Misra submitted)

Ranjeev Misra, IUCAA, Pune, India.

67 mHz QPO with harmonics in GRS 1915+105

Cui 1999

Ranjeev Misra, IUCAA, Pune, India.

Cui 1999

The X-ray Universe 2014 Dublin, Ireland, June 2014

- Precession of a non-uniform disk
- Wave propagation from outer to inner disk (Lyubarskii 1997, Misra 2000, Kotov, et. al. 2001)
- Spectral Evolution due to two parameters whose variation is delayed with respect to each other.

Model for Spectral Evolution

For a time varying spectrum with two parameters a and b

 $s(E,t) \rightarrow s_o(E) + \Delta s(E,t)$

$$\Delta s(E,t) = \gamma_a(E) \Delta a(t) + \gamma_b(E) \Delta b(t)$$

For e.g. if $s(E) = A E^{-b}e^{-aE}$, then:

$$\frac{\Delta s(E,t)}{s_o(E)} = -E\Delta a(t) - \log(E/E_p)\Delta b(t)$$

The X-ray Universe 2014 Dublin, Ireland, June 2014

Three basic Equations

$$\frac{\Delta s(E,t)}{s_o(E)} = -E\Delta a(t) - \log(E/E_p)\Delta b(t)$$

$$\Delta a(t) = R_a (1 + \beta \cos(\omega_o t))^4$$

$\Delta b(t) = F \Delta a(t - t_d) + R_b \beta \cos(\omega_o t)$

The X-ray Universe 2014 Dublin, Ireland, June 2014

- The spectrum is characterized by two parameters a and b
- The parameter a couples to the underlying driver quadratically.
- The parameter b follows a after some time delay and also directly couples linearly to the driver.

Odd and even harmonics show opposite phase lag!

Ranjeev Misra, IUCAA, Pune, India.

Alternating Lags for the QPO harmonics

Model also reproduces the fractional r.m.s as it should!

Ranjeev Misra, IUCAA, Pune, India.

Alternating Lags for the QPO harmonics

Model predicts Bi-coherence functions which can be checked against Further data analysis

Ranjeev Misra, IUCAA, Pune, India.

Time Lag for another low frequency QPO

Mukerjee et. al. 2014 submitted

Ranjeev Misra, IUCAA, Pune, India.

- The complex behavior of time lags as a function of energy can be explained by theoretical and phenomenological models which provide insight into the nature of the system.
- To connect with the actual dynamic model one needs to identify the correct radiative process.