

Ranjan Vasudevan (IoA, Cambridge),

Niel Brandt (Penn State, USA), Richard Mushotzky, Marcio Melendez, Taro Shimizu (UMD, USA), Andy Fabian (IoA, Cambridge), Poshak Gandhi (Durham) Lisa Winter (AER, USA), Wayne Baumgartner (NASA/GSFC, USA), Poster: Luigi Gallo (St. Mary's, Canada), Dom Walton (Caltech), Abdu Zoghbi (UMD), Anne Lohfink (Cambridge)

> Vasudevan et al. (2013a) ApJ, 763, 111 Vasudevan et al. (2013b), ApJ Letters, 770, 37 Vasudevan et al. (2014), ApJ, 785, 30 (poster) related: Vasudevan et al. (2013c), MNRAS, 431, 3127

Swift/BAT's utility: 'unbiased' detection of AGN

• Gilli, Comastri & Hasinger (2007)

The X-ray Universe, Dublin

The BAT catalogue (9-month)

• Tueller et al. (2008)

The BAT catalogue (22-month)

The BAT catalogue (58-month)

The BAT catalogue (70-month)

Baumgartner et al. (2013)

Earlier work on BAT AGN catalogue

- Winter et al. (2009, 2010, 2012) X-ray, optical properties, outflows
- Vasudevan et al. (2009, 2010) X-ray, optical/UV, IR, energy budget
- Burlon et al. (2011, 2013) X-ray properties, radio properites/jets
- Matsuka et al. (2012), Melendez et al. (2014 submitted) hard X-ray & IR correlations, torus properties
- Ajello et al. (2008, 2012) X-ray properties, stats
- Koss et al. (2010, 2011) host galaxy properties of BAT AGN, merging/ clustering

Scope

- NB: 58-month catalogue has 720 AGN candidates (BAT SNR > 4.8), many without XMM or equivalent coverage; Galactic plane has many local contaminants (X-ray binaries, Galactic absorption etc), so better to target a complete subsample of manageable size.
- Therefore restrict to Galactic latitude b > 50° (Brandt et al. 2008 XMM proposal).
 Low Galactic N_H allows analysis of soft features too
- Performed a comprehensive analysis of a **complete subsample from the 58-month BAT catalogue** and updated the analysis of previous versions of the catalogue (Winter et al. 2009, Burlon et al. 2011)
- Determined up-to-date absorbing column density distribution, luminosity distribution and details of spectral features
- Aim: construct multi-wavelength SEDs for this complete sample; sky area has complementary coverage at other wavelengths for SEDs (e.g. SDSS, 2MASS, WISE, AKARI, GALEX+...)

Scope

- NB: 58-month catalogue has 720 AGN candidates (BAT SNR > 4.8), many without XMM or equivalent coverage; Galactic plane has many local contaminants (X-ray binaries, Galactic absorption etc), so better to target a complete subsample of manageable size.
- Therefore restrict to G Low Galactic N_H allow
- Performed a comprehe month BAT catalogue catalogue (Winter et a
- Determined up-to-date distribution and detai

dt et al. 2008 XMM proposal).

e subsample from the 58previous versions of the

distribution, luminosity

 Aim: construct multi-wavelength SEDs for this complete sample; sky area has complementary coverage at other wavelengths for SEDs (e.g. SDSS, 2MASS, WISE, AKARI, GALEX+...)

Sample properties: key statistics

- 106 non-blazar AGN candidates (at SNR > 4.8)
- High proportion have targetted XMM data (49 objects)
- Targetted **Swift/XRT** observations for 46 objects
- ASCA/Tartarus archival objects used for 6 objects
- 5 objects without data at the time of writing
- Local: z < 0.2

Analysis: spectral fitting

	Model Combinations Used								
Model Identifier	XSPEC Model String	Description							
Simple power-law models									
S1	TBABS(POWERLAW)	Power-law with Galactic absorption only							
S2	TBABS(ZTBABS(POWERLAW))	Absorbed power-law with Galactic and intrinsic (neutral) absorption							
S 3	TBABS(ZTBABS(POWERLAW+ZGAUSS))	As for S2, with a Fe K α line at (default) 6.4 keV							
S4	TBABS(ZTBABS(POWERLAW+ZBBODY))	As for S2, with a soft excess modeled as a blackbody							
\$5	TBABS(ZTBABS(ZEDGE(POWERLAW)))	As for S2, with an edge at 0.73 keV (default) to model a warm absorber							
S6	TBABS(ZTBABS((POWERLAW+ZBBODY+ZGAUSS)))	As for S2, with both a soft excess and Fe K α line							
S 7	TBABS(ZTBABS(ZEDGE(POWERLAW+ZGAUSS)))	Absorbed power-law with warm-absorber edge and Fe K α line							
S8	TBABS(ZTBABS(ZEDGE(POWERLAW+ZGAUSS+ZBBODY)))	Absorbed power-law with warm-absorber edge, Fe K α line and soft excess							
S9	TBABS(ZTBABS(ZEDGE(ZEDGE(POWERLAW))))	Absorbed power-law with two warm-absorber edges at 0.73 and 0.87 keV (default energies)							
S10	TBABS(ZTBABS(ZEDGE(ZEDGE(POWERLAW+ZGAUSS))))	Absorbed power-law with two warm-absorber edges and a Fe K α line							
S11	TBABS(ZTBABS(ZEDGE(ZEDGE(POWERLAW+ZGAUSS+ZBBODY))))	Absorbed power-law with two warm-absorber edges, Fe K α line and soft excess							
	Complex models (partial covering)								
Cl	TBABS(ZPCFABS(POWERLAW))	Partially covered absorbed power-law with Galactic absorption							
C2	TBABS(ZPCFABS(POWERLAW+ZGAUSS))	As for C1, including a Fe K α line at (default) 6.4 keV							

Ranjan Vasudevan

Analysis: spectral fitting

Resuts: column density distribution and flux limit

• 5 times fainter detection limit than 9-month catalogue, uncovers wider absorption distribution

Results: column density distribution – some statistics

- 57-61 per cent with logNH>22
- 41-45 per cent with logNH>23
- 9 per cent Compton Thick (logNH>24.15)
- These fractions use a basic absorption model (no Compton scattering see Monday's Extragalactic Surveys talks – e.g. Georgantopoulous talk)
- More robust 'plcabs' includes Compton scattering but degeneracies involved; yields lower columns by factor ~0.65 and would reduce the Compton Thick fraction (c.f. 4.6% from Burlon et al. 2011 for 36-month catalogue); MyTorus (Murphy & Yaqoob 2009) may yield different results

Results: spectral features

Table 7 Comparing BAT Catalogs: Luminosity and Prevalence of X-Ray Features								
Catalog (1)	$(\log L_{2-10 \text{ keV}}), \sigma$	$\langle \log L_{2-10 \text{ keV}} \rangle, \sigma$	$(\log L_{2-10 \text{ keV}}), \sigma$	Fe Kα	Soft Excess	Hidden/Buried		
	(All)	$(\log N_{\text{H}} < 22)$	$(\log N_{\text{H}} > 22)$	%	%	%		
	(2)	(3)	(4)	(5)	(6)	(7)		
9 month	43.01 (0.87)	43.42 (0.79)	42.67 (0.78)	81%	41%	24%		
22 month	42.70 (0.93)	42.80–42.84 (0.90–0.95)	42.60–42.65 (0.93–0.95)	75%	32%–36%	28%		
58 month	43.00 (0.91–0.92)	43.02–43.07 (0.96–0.98)	42.91–42.97 (0.89)	79%	31%–33%	13%–14%		

Ionised absorber edges (OVII and OVIII): 18% (or 32% of unabsorbed logNH<22 AGN)

Results: Iron K-α line properties

See also papers by Ricci et al. (2013, 2014, talk earlier today) on "X-ray Baldwin/Iwasawa-Taniguchi Effect", confirms slope of Page et al. (2004), Jiang et al. (2006), Bianchi et al. (2007)

Results: soft X-ray (0.4-2keV) excess (see poster)

Results: Compton reflection

logNH<22
 22<logNH<23
 logNH>23

<R>=2.7+/-0.75

Fold energy outside BAT bandpass on average

BAT renormalisation allows 3 reflection parameters to be better constrained by removing a degree of freedom

Spin-off studies: the origin of the soft excess using broad-band X-ray data

Spin-off studies: Can we reproduce the X-ray background spectrum using local AGN?

See X-ray background synthesis models of e.g. Akylas et al. (2012) – also R. Walter talk on Monday (Extragalactic Surveys & Populations, CXB session), Ricci et al. (2011)

Future work: multi-wavelength AGN SEDs for a complete sample

Vasudevan et al. (2013), MNRAS, 431, 3127

Uses:

- Bolometric luminosities/bolometric corrections (Vasudevan et al. 2007, 2009a,b, 2010)
- If good UV, accretion efficiencies Davis & Laor (2011), Raimundo et al. (2012), Trakhtenbrot (2014), talk by Matthew Middleton (Monday)
- Relative power emitted in the corona vs. the disc
- If coupled with M_{BH} estimates, can study effect of radiation pressure (λ_{Edd}) on absorption (N_{H})

NuSTAR campaign to observe ~200 BAT AGN; reflection and coronal properties constrained (Marinucci talk)

Summary

- The Northern Galactic Cap is a complete, hard X-ray selected, representative local AGN sample
- We have already produced key results on the absorption and luminosity distribution, spectral features, connection to the X-ray background
- This sampled has 'inspired' **simulation work on the soft excess** production mechanism (poster 18/10)
- The extensive multi-wavelength archival data is **ripe for broad-band SEDs**, which will give a complete picture of **bolometric accretion luminosity output** and shed light on other issues e.g. radiation pressure vs. absorption
- Plenty of scope for **proposals, e.g. NuSTAR, XMM, HST-COS...**

Summary

• The Northern Galactic Cap is a complete, hard X-ray selected, representative local AGN sample

Ranjan Vasudevan

Extra slides

Using broad-band (0.4-200 keV) data – renormalising BAT data

Ranjan Vasudevan

The X-ray Universe, Dublin

19 June 2014

Counts distribution

(A color version of this figure is available in the online journal.)

From data to results

Table 1 Table of Observations Used for Each Object													
AGN	Redshift	R.A.	Decl.	l	b	Instrument	ObsID	Obs. Date	Source Counts	Obs. Time (ks)	Usable % of obs.	Optical Type	BAT Flux (SNR)
3C 234	0.1849	150.457	28.785	200.208	52.708	XMM	0405340101	2006-04-24	9214	39.9	84	Sy1/Sy2	8.73 (5.10)
NGC 3227	0.0039	155.878	19.865	216.992	55.446	XMM	0101040301	2000-11-28	53612	40.1	99	Sy1.5	112.78 (56.21)
SDSS J104326.47+110524.2	0.0476	160.860	11.089	234.761	55.932	XRT	00040954001	2010-10-29	2085	9.8		Syl	14.85 (4.84)
MCG +06-24-008	0.0259	161.203	38.181	182.222	61.326	XRT	00040955004	2010-10-31	133	4.4		galaxy	13.69 (5.04)
UGC 05881	0.0206	161.679	25.932	208.222	62.148	XRT	00037314002	2008-07-03	217	8.8		Sy2	20.94 (10.42)

Table 3 Basic Fit Results										
AGN	Model (χ^2 /dof, <i>P</i> (Null Hyp.)) (1)	$N_{\rm H}^{\rm Gal}$ (2)	N _H (Covering Fraction) (3)	Г (4)	$F_{0.5-2 \text{ keV}}$ (5)	F _{2-10keV} (6)	$L_{0.5-2 \text{ keV}}^{\text{int}}$ (7)	$L_{2-10 \text{keV}}^{\text{int}}$ (8)	L _{14-195 keV} (9)	$\begin{aligned} \text{RL} &= L_{5\text{GHz}} / L_{2-10\text{keV}}^{\text{int}} \\ (10) \end{aligned}$
3C 234	C2 (658.26/361, 0.000)	1.76	23.81 ^{+0.02} _{-0.02} (0.98)	2.20-0.01	0.94	12.54	44.70	$44.64^{+0.02}_{-0.00}$	44.9 (44.6†)	<-5.331
NGC 3227	C2 (1988.13/1775, 0.000)	1.99	23.02 ^{+0.01} _{-0.01} (0.92)	$1.50^{+0.01}$	3.83	84.25	41.18	41.58 ^{+0.01} -0.02	42.6 (42.7)	-3.917
SDSS J104326.47+110524.2	S2+BAT (80.53/89, 0.728)	2.47	$20.82^{+0.19}_{-0.32}$	$1.83^{+0.10}_{-0.09}$	29.18	51.99	43.26	43.43 ^{+0.10} -0.10	43.9 (43.8)	<-5.403
MCG +06-24-008	C1+BAT (4.72/7, 0.694)	1.26	23.81 ^{+0.55} _{-1.26} (0.79 ^{+0.21} _{-0.48})	1.50+0.46	9.04	46.06	42.81	43.20 ^{+0.90} -0.81	43.3 (43.3)	-4.895
MCG +06-24-008	S2+BAT (6.04/8, 0.643)	1.26	22.96 ^{+0.31} -1.05	$1.50^{+0.38}$	0.18	34.11	42.46	42.85 ^{+0.33} -0.47	43.3 (43.3)	-4.671
UGC 05881	C1+BAT (7.81/13, 0.856)	2.51	$24.39^{+0.15}_{-0.14} (0.92^{+0.03}_{-0.09})$	$2.05^{+0.15}_{-0.31}$	22.63	33.48	43.44	$43.47_{-43.47}^{+0.48}$	43.3 (43.6†)	-5.245

Table 4 Fit Results—Detailed Features (iron K α Lines, Soft Excesses and Warm-absorber Signatures) for Objects with >4600 counts in the Fit Spectra										
AGN	Model	Е _{FeK} (1)	EQW _{FeK} (2)	E _{softex} (3)	S _{sofiex} (4)	L _{BB} (5)	τ _[Ον11] (6)	E _[O vii] (7)	τ _[Ο νш] (8)	E _[O VIII] (9)
3C 234	C2	6.40*	$0.117^{+0.052}_{-0.060}$							
NGC 3227	C2	$6.40^{+0.01}_{-0.01}$	$0.230^{+0.028}_{-0.010}$							
Mrk 728	S 3	$6.36^{+0.06}_{-6.36}$	$0.201^{+0.070}_{-0.055}$		< 0.011		< 0.017			
IC 2637	S 6	6.40*	$0.256^{+0.146}_{-0.158}$	$0.203^{+0.020}_{-0.026}$	$0.110^{+0.041}_{-0.039}$	$0.005^{+0.002}_{-0.002}$	< 0.043			
PG 1114+445	S10	$6.40^{+0.06}_{-0.05}$	$0.141^{+0.036}_{-0.020}$		< 0.007		$2.131^{+0.139}_{-0.127}$	0.73	$0.534^{+0.100}_{-0.105}$	0.87
1RXS J1127+1909	S 7	6.40*	$0.076^{+0.044}_{-0.035}$		< 0.012		$0.794^{+0.071}_{-0.069}$	0.73		

Ranjan Vasudevan

Radio loudness

Figure 9. Radio loudness $(\nu L_{\nu}(\nu = 5 \text{ GHz})/L_{2-10 \text{ keV}})$ against intrinsic 2–10 keV luminosity. Downward-pointing arrows show upper limits where FIRST radio detections were not available (assuming a flux limit of 0.75 mJy to calculate the luminosities).

Absorbed fraction vs. luminosity

Figure 13. Absorbed fractions against intrinsic 2–10 keV luminosity (10 objects per bin). Filled circles connected by thin solid lines show the fraction of sources with $\log(N_{\rm H}) > 22$, whereas empty squares connected by thick lines show the fraction of sources with $\log(N_{\rm H}) > 23$. The solid gray and blue hatched shading reveal the uncertainty in these fractions due to the 13 sources with ambiguous spectral types (and hence two estimates for their log $N_{\rm H}$). The absorbed fraction in the highest luminosity bin (indicated by the red square) is more uncertain since it contains only four objects.

Photon index vs. Luminosity

Figure 15. Photon index Γ against intrinsic (absorption-corrected) 2–10 keV luminosity $L_{2-10 \text{ keV}}$. The gray shaded areas delineate the hard limits imposed on Γ in the fit.

Soft excess strength vs. photon index

Reflection properties (using BAT+XMM)

Table 5 Reflection Fit Results for Objects with XMM-Newton Data, Fit in Conjunction with BAT Data									
AGN	Partial Covering?	BAT Renormed?	R (3)	E _{fold}	(5)	<u>ΔΓ</u> (6)			
3C 234	Y	(2) Y	<0.58	138+1594	2.03+0.14	-0.17			
NGC 3227	Y		12.86+3.10	>636	$2.08^{+0.05}_{-0.09}$	0.58			
Mrk 417	Y	Y	< 0.45	38+13 -17	$0.75_{-0.31}^{+0.08}$	-1.31			
Mrk 728			$0.07^{+3.10}_{-0.07}$	616_570	$1.70_{-0.09}^{+0.38}$	-0.07			
IC 2637		Y	$1.09^{+2.38}_{-0.91}$	>156	1.79+0.24	0.10			

Reflection vs. luminosity for stacked spectra

Summed soft spectrum from entire catalogue

'Evolution' of the BAT AGN with flux limit

Table 6 Comparing BAT Catalogs: Flux Limits, Completeness, and Absorption Properties										
Catalog	Flux Limit	Completeness Limit	Ambiguous Sources	$\log(N_{\rm H}>22)$	$\log(N_{\rm H}>23)$	$log(N_{\rm H} > 24.15)$ (C-thick)	Simple Abs. ($(\log N_H), \sigma$)	Complex Abs. ($(\log N_H), \sigma$)		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		
9 month	-10.70	-11.0	0%	55%	33%	0% (<6%)	45% (20.58,0.74)	55% (23.03,0.71)		
22 month	-10.96	-11.25	10%	59%-64%	49%-54%	5% (<18%)	36%-46% (20.47-20.56, 0.86-0.90)	54-64% (23.28-23.4, 0.57-0.68)		
58 month	-11.40	-11.6	13% †	57%-61%	41%-45%	9% (<15%)	38%-50% (20.67-20.80, 1.12-1.18)	43-56% (23.27-23.55,0.71-0.95)		

Notes. (1) Catalog. (2) Logarithm of BAT flux limit (14–195 keV) in erg cm⁻² s⁻¹. (3) Completeness limit, given as $\log(S)$ for 2–10 keV flux *S* in units of erg cm⁻² s⁻¹. (4) Percentage of sources with ambiguous spectral types. (5) Percentage of sources with $\log(N_{\rm H}) > 22$. (6) Percentage of sources with $\log(N_{\rm H}) > 23$. (7) Percentage of Compton-thick sources, with $\log(N_{\rm H}) > 24.15$ (upper limits are based on consideration of the other Compton-thickness metrics discussed in Section 5.1). (8) Percentage of simple absorption sources, with average column density and standard deviation. (9) Percentage of complex-absorption sources, with average column density and standard deviation. (9) Percentage of not have enough counts to construct a spectrum, so these are not classified into any of the categories shown here.

Future work: multi-wavelength AGN SEDs for a complete sample

erg s⁻¹ cm⁻², where $\log(N > S)$ is the logarithm of the number of sources with flux greater than S. The thin line shows a slope of -1.5 expected for a uniform distribution. Our sample shows a slope consistent with this down to fluxes of $\log(S) = -11.6$.