Abundance patterns in the Interstellar Medium of early-type galaxies observed with Suzaku (Konami et al. 2014 ApJ, 783, 8)

Saori KONAMI (Tokyo Metropolitan University) Kyoko Matsushita, Ryo Nagino, and Toru Tamagawa

Metals of Early-type galaxy

Early-type galaxy

- star formation activity is low
- most stars are old population
- expanded hot interstellar medium
 (ISM) emitting X-ray

Metal in the ISM

Stellar mass loss ₊ present SN la (O, Ne, Mg, Si, Fe) (Fe)

- The stellar metallicity reflects the past activity of star formation.

- The metal abundances in hot ISM have information of star formation histories of galaxies.

Inconsistencies in previous results of metal abundances

Fe abundance

Method	Fe
X-ray observations (e.g., Mushotzky+94, Matsushita+00, Ji+09)	∼ 1 solar
Optical observations (stars) + present SN la rate (e.g., Matsushita+03, Nagino+09, Konami+09)	~ 3 solar

"Fe" from stars + present SN Ia \neq "Fe" in the hot ISM

O/Fe, Mg/Fe, Si/Fe ratios			0 a	nd Mg come from stars.
	Mg/Fe, Si/Fe	0/Fe		O/Fe:
Hot ISM (X-ray)	∼ 1 solar	∼ 0.5 solar		Only O in the hot ISM is low ?
		(e.g., Ji+()9)	

Optical observations of metals in stars

The both of metal abundances and abundance ratios are correlated with the velocity dispersion of stars.

Comparison of optical and X-ray observations

$(r_{\rm e}: half-light radius)$

	target	region	merit	demerit
optical	star	< r _e	measure metals in only stars	 1. limited to center region 2. degeneracy between metals and star ages
X-ray	hot ISM	∼ 4—6 r _e	measure metals in entire galaxy	measure metals summed from stars and SN la

X-ray measurements of metal abundances in the hot ISM

optical measurements of stellar metallicity

Purpose of this study

Previous results:

- inconsistency Fe abundances
- low value of O/Fe ratio in the hot ISM
- optical and X-ray observations are complementary

We investigate the metal abundances and abundance ratios in the hot ISM of 17 early-type galaxies observed with Suzaku

In this study:

- The largest number of samples to measure metal abundance ratios

- Suzaku can measure O and Mg with high sensitivity

Targets

- 17 early-type galaxies
- 14 ellipticals and
 3 S0s
- 11 in clusters and
 6 in the field

Spectral analysis regions

a circle with radius of each $4r_{e}$

NGC1399 & NGC1404

0.004 0.012 0.028 0.08 0.12 0.25 0.5 1 2

vith radius

NGC5846

X-ray images (0.4 –5 keV)

Performance (1997) (199

NGC4697

0.00022 0.00066 0.0016 0.0000 0.0069 0.014 0.008 0.056 0.11

10227 0.008 0.019 0.04 0.063 0.17 0.34 0.68

Spectral analysis: NGC4636

Metal abundances are correlated with velocity dispersion
This relation is consistent to those of optical observation

- The stellar relation within the center region (<re) agree with those in the entire galaxies.

- The two results (by optical and X-ray observations) are consistent, although they have very different systematic uncertainties.

Fe abundance from present SN Ia

Fe abundance from SN Ia

- Suzaku (this study) 0.6 solar
- Calculation using the SN la rate 3—13 solar

 \rightarrow Fe in the hot ISM is less?

* SN Ia ejecta escape from the ISM before being fully mixed into the ISM ? (e.g., Matsushita+2000)

- Tang & Wang (2010) simulated Fe escaped to outside via outflow.

- In the intra-cluster medium of cluster of galaxies, Fe abundance derived from X-ray spectra are larger than those calculated using SN Ia rate (Sato+12, Matsushita+12).

consistent with the results of optical observations
in the entire galaxy agree with that within the center region (<re).

consistent with the results of optical observations
in the entire galaxy agree with that within the center region (<re).

consistent with the results of optical observations
in the entire galaxy agree with that within the center region (<re).

Metal abundance ratios

The smaller galaxies have shorter star formation time scale?

Summary

- We have analyzed 17 early-type galaxies, 13 ellipticals and 4 SOs.
- Metal abundance and abundance ratios in the ISM of the galaxies are solar and solar ratios, respectively.
- The relation of metal (O, Mg) and velocity dispersion is consistent with those from optical observations.

- The stellar relation within the center region (<re) agree with those in the entire galaxies.

- The two results (by optical and X-ray observations) are consistent, although they have very different systematic uncertainties.

- The amount of Fe from SN Ia is less than those calculated using the rate of present SN Ia.
- Metal abundance ratios (O/Fe, Mg/Fe) in stars are larger than solar ratio
 - The results are consistent with those of optical observations.
 - The time scale of star forming in early-type galaxies are shorter than those of our galaxy (spiral galaxy).