The Warm-hot Gaseous Halo of
the Milky Way

Smita Mathur The Ohio State University

With Anjali Gupta, Yair Krongold, Fabrizio Nicastro, M. Galeazzi

In the low-redshift Universe, baryons are missing on all scales

Where are the Galactic missing baryons?

Local WHIM filament scale length > 1 Mpc Local Group Medium scale length of ~ 1 Mpc Circum-Galactic Medium: extending up to the virial radius (~250kpc)

 $10^5 \text{ K} < \text{T} < 10^7 \text{ K}$

Simulations of the CGM

Low Feedback

High Feedback

Stinson et al. 2011

Diffuse Warm-hot CGM

z = 0 X-ray Absorption

In several high S/N Chandra and XMM spectra

• OVII absorption (@21.60 Å)

 Sometimes OVIII (@18.96 Å) and/or Ne IX (@13.44 Å)

Mathur et al. 2003

Z=0 X-ray absorption

PKS 2155-304 Nicastro et al. 2002

z = 0 X-ray Absorption

- In several high S/N Chandra spectra:
 - Mkn 421 (Williams et al. 2005)
 - Mkn 279 (Williams et al. 2006)
 - PKS 2155-304 (Nicastro et al. 2002)
 - 3C 273 (Fang et al. 2003)
 - Other sightlines with lower significance (McKernan et al 2004)
- Always OVII, sometimes other species
- Chandra-LETG resolution 700 km/s, so all lines are unresolved

Origin

- Hot Galactic Halo/Corona...
 - From galaxy formation / feedback processes
 - Some OVII seen within 50 kpc (Wang et al. 2005)
- ... or Local Warm-Hot IGM?
 - Predicted by simulations (Kravtsov et al. 2002)
 - Upper limit on OVII emission implies very low density (Rasmussen et al. 2003)

Our Chandra Survey of Ovii and Oviii

Our Chandra Survey of OVII and OVIII

• 29 sight lines with good S/N near OVII z=0 region

- Ovn detection in 21 sight lines
- Ovm detection in 8 sight lines

OVII and OVIII z=0 Absorption

• Log T = 6.1-6.4 K

Column Density Measurement

- Optically thin line N(ion) = $1.3 \times 10^{20} (EW/f \lambda^2) cm^{-2}$
- For OVII

• E

$EW(K\beta)/EW(K\alpha) = 0.156$

Table 2: The O VII and O VIII absorption line measurement.						
Target	EW (O VII $_{K\alpha}$)	EW (O VII $_{K\beta}$)	EW (O VIII $_{K\alpha}$)	O VII $\left(\frac{EW(K\beta)}{EW(K\alpha)}\right)$	b	$\log(NO VII)$
	$(m \AA)$	$(m {A})$	$(m \AA)$		km/s	cm^{-2}
Mrk290	18.9 ± 4.5	5.1 ± 3.7	8.4 ± 2.9	0.27 ± 0.21	> 55	$16.14\pm0.32^*$
PKS2155-304	11.6 ± 1.6	4.2 ± 1.3	6.7 ± 1.4	0.36 ± 0.12	35 - 94	16.09 ± 0.19
Mrk421	9.4 ± 1.1	4.6 ± 0.7	1.8 ± 0.9	0.49 ± 0.09	24 - 55	16.22 ± 0.23
Mrk509	23.9 ± 5.0	11.7 ± 4.1	10.3 ± 4.3	0.49 ± 0.20	70 - 200	16.7 ± 0.27
3C382	17.3 ± 5.0	7.8 ± 3.0	6.8 ± 3.8	0.45 ± 0.22	> 40	$16.50\pm0.49^*$
Ark564	12.0 ± 1.9	< 3.8	9.5 ± 4.1		> 20	$15.82\pm0.20^*$
NGC3783	14.4 ± 2.5	5.6 ± 1.6	4.5 ± 2.9	0.39 ± 0.13	50 - 130	16.30 ± 0.25
H2106-099	48.3 ± 18.0	< 34.2	28.8 ± 13.8	1111	> 70	$16.23\pm0.16^*$

th

*Ti Most of OVII Ka are saturated

log(N_{OVII}) and b contour

• $Log N_{OVII} = 16.19 \pm 0.08 \ cm^{-2}$

2-3 times higher than previous estimates

• Column density N_H=µ n_eL

Galactic Halo Emission Measure

Henley et al. (2010) and Yoshino et al. (2009)

- Galactic Halo temperature is fairly constant $T = (1.8 2.4) \times 10^6 \text{ K}$
- Halo emission measure varies by an order of magnitude EM = (0.0005 – 0.005) cm⁻⁶ pc

 $EM = 0.003 (Z/Z_{\Theta}) \text{ cm}^{-6} \text{ pc}$

Combining Absorption and Emission Measurement

 $n_{e} = (2.0 \pm 0.6) \times 10^{-4} (0.5/f_{OVII})^{-1} \text{ cm}^{-3}$ R = (71.8 ± 30.2) (8.51 × 10⁻⁴/(A_O/A_H))(0.5/f_{OVII})²(Z_{\overline{O}}/Z) kpc}

> L > 41.6 kpc $n_e < 2.6 \times 10^{-4} \text{ cm}^{-3}$

Mass Probed by OVII and OVIII X-ray Absorbing/Emitting Gas Phase

 $\mathbf{M}_{total} > \mathbf{1.7} \times \mathbf{10^9} \ (\mathrm{fc}/\mathrm{0.72}) \ (8.51 \times 10^{-4} / (\mathrm{A_O}/\mathrm{A_H}))^3 (0.5 / \mathrm{f_{OVII}})^5 (\mathrm{Z_{\Theta}}/\mathrm{Z})^3 \mathbf{M_{\Theta}}$

For $Z = 0.3Z_{\Theta}$

L > *138 kpc*

 $M_{total} > 6.1 \times 10^{10} M_{\Theta}$

Gupta, Mathur + 2012, 2014

Courtesy: Chandra presss office

Fang, Bullock +2012

This is a robust result!

- Is the z=0 absorption mostly from the Galactic disk? No.
- What about the uniform density profile?
 No problem: gives a lower limit on mass.
- Are the emission and absorption at different temperatures? No.

.... no anticorrelation between EW and sin(b)

Future directions

- Probing the anisotropy: emission and absorption along the same sightline.
 - -- New Suzaku observations
 - -- New XMM-Newton Observations.
- Different density and temperature profiles: e.g. Maller-Bullock profile in NFW halo.
- Probing the multi-phase medium: other ions dominant at different temperatures.

Conclusion

• X-rays provides evidence for hot (T>10⁶ K) gas in and around the Milky Way.

• X-ray OVII and O VIII absorption lines at z=0 probe the hot gas extending over a large region around the Milky Way, with a radius of over 100 kpc.

•The mass content of this phase is over 10^{10} M_{\odot}.

•A large fraction of Galactic missing baryons are in this hot phase.

•Appears to be a robust result supported by theoretical models.