

3D HYDRODYNAMIC MODELING OF SN 1987A FROM THE SUPERNOVA EXPLOSION TILL THE ATHENA+ ERA

S. Orlando¹, M. Miceli¹, M.L. Pumo^{2,3}, F. Bocchino¹

1 INAF - Osservatorio Astronomico di Palermo, Italy
2 INAF - Osservatorio Astronomico di Padova, Italy
3 INAF - Osservatorio Astrofisico di Catania, Italy

S. Orlando - The X-ray Universe 2014

Dublin, Ireland, June 2014

- Observed interaction of the SNR with the inner equatorial ring
- Aims of this project
- Modeling the SN explosion and subsequent SNR evolution
- Comparison with observations: X-ray lightcurves and spectra
- Predictions on the future evolution —> Athena+
- Summary and Conclusions

CAPA

SN 1987A

The remnant of SN 1987A provides a unique opportunity to investigate the evolution of a CC SNR during the early phase of its evolution:

- Probe the structure of the CSM immediately surrounding the SN (clues on the final stages of the star's evolution)
- Probe the structure of the ejecta (clues on the dynamics of the SN explosion)

Origin of the CSM

interaction of a slow wind from the red supergiant phase with the faster wind from the blue supergiant phase (e.g. Luo & McCray 1991; Morris & Podsiadlowski 2007).

Currently, the explosion is sweeping up the inner equatorial ring that was formed by the late stages of the star's evolution.

Supernova 1987A Rings

Hubble Space Telescope Wide Field Planetary Camera 2

Interaction with the inner equatorial ring

Estimated intrinsic morphology (corrected for the *Chandra* PSF) of SN 1987A (Helder+ 2013)

A time sequence of Hubble Space Telescope (Larsson+ 2011)

Modeling the emission of SN 1987A

Origin of X-ray emission: interpretation of the observations

Proposed model consisting of 3 emitting components (Zhekov+ 2010; Dewey+ 2012):

1) material in the dense ring heated by a slow shock (500 km s⁻¹); $T_e \sim 0.3-0.5$ keV

2) shock-heated CSM (HII region) located above and below the equatorial ring

3) shocked plasma, reheated by a reflected shock caused by the interaction with the equatorial ring (Zhekov+ 2010) or, alternatively, fast shock traveling through a uniform equatorial ring material (Dewey+ 2012); $T_e \sim 3$ keV

APA

We describe the three-dimensional evolution of SN 1987A from the immediate aftermath of the SN explosion (~ 20 hrs) to its expansion in the SNR with high model resolution and taking into account all relevant physical processes

We compare model results with observations to derive:

- the physical parameters characterizing the progenitor star (mass of ejecta and energy of explosion)
- the density structure of the CSM immediately around the SN
- the contribution of the different shocked plasma components to the observed X-ray emission and spectra

We use the model to derive preditions on the future evolution of the remnant until the Athena+ era

Modeling the supernova explosion

Initial distribution of ejecta for the 3D SNR model

derived from a 1D relativistic, radiation-hydrodynamics Lagrangian code, specifically tailored to simulate the evolution of the main observables in core-collapse SNe

(Pumo & Zampieri 2011)

- Fully general relativistic treatment
- Radiative transfer coupled to relativistic hydrodynamics at all regimes
- Gravitational effects of the central compact remnant on the evolution of the ejecta (fallback of material onto the compact remnant; amount of ejected ⁵⁶Ni)

We follow the SN evolution from the breakout of the shock wave at the stellar surface up to the so-called nebular stage

Grid of models (see also Pumo & Zampieri 2011)

		range of values explored	best-fit values
envelope mass Energy	(M_{\odot}) (10^{51} erg)	$\begin{array}{c} 8-18\\ 1-2 \end{array}$	$\begin{array}{c} 15-17\\ 1.2-1.4\end{array}$

S. Orlando - The X-ray Universe 2014

Dublin, Ireland, June 2014

APA

Modeling the SNR evolution

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \rho \mathbf{u} = 0 \ ,$$

$$\frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot \rho \mathbf{u} \mathbf{u} + \nabla P = 0 ,$$

$$\frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho E + P) \mathbf{u} = -n_{\rm e} n_{\rm H} \Lambda(T) ,$$

where $E = \epsilon + \frac{1}{2} |\mathbf{u}|^2$,

- Clumping of ejecta (Orlando+ 2012)
- Radiative losses from optically thin plasma
- Non-equilibrium of ionization
 - time evolution of each parcel of gas is followed (Dwarkadas+ 2010)
 - deviations from equilibrium of selected elements (O, Ne, Mg, Si) is calculated
- Tracers to follow the evolution of ejecta, HII region, and ring material

Initial conditions

20 hours after the SN explosion

Spatial resolution

A major challange was capturing the enormous range in spatial scales

- Initial remnant radius ~ 20 AU (3e14 cm)
- Full spatial domain ~ 1 pc (3e18 cm)

18 nested levels of adaptive mesh refinement effective resolution ~ 0.2 AU (3e12 cm)

> 100 cells per remnant radius during the whole evolution

Equivalent uniform grid ~ 1e6 X 1e6 X 1e6

FLASH code (Univ. of Chicago)

PRACE Award N.2012060993

APA

Initial conditions and parameter space

			range of values explored	best-fit values
HII reg.	$n_{HII} \ r_{HII}$	(10^2 cm^{-3}) (pc)	$0.8 - 3 \\ 0.08 - 0.2$	$\begin{array}{c} 0.9 \\ 0.08 \end{array}$
unit. ring	$n_{rg} \ r_{rg} \ w_{rg} \ h_{rg}$	$(10^3 \text{ cm}^{-3})) (\text{pc}) (10^{17} \text{ cm})) (10^{16} \text{ cm})$	$egin{array}{c} 1-2 \ 0.16 \ 0.7-2 \ 3.5 \end{array}$	$1 \\ 0.16 \\ 1.7 \\ 3.5$
clumps	$< n_{cl} > \\ < r_{cl} > \\ w_{cl} \\ N_{cl}$	(10^4 cm^{-3}) (pc) (10^{16} cm)	$egin{array}{c} 1-3 \ 0.14-0.17 \ 1-3 \ 40-70 \end{array}$	$2.2 - 2.8 \\ 0.14 - 0.17 \\ 1.7 \\ 50$

Movie not available in PDF version

S. Orlando - The X-ray Universe 2014

Dublin, Ireland, June 2014

The evolution of SN 1987A

Our model

$$M_{rg} \sim 0.062 M_{sun}$$

~ 0.040 M_{sun} @ n = 10³ c

~ 0.040 $M_{sun} @ n = 10^3 \text{ cm}^{-3}$ ~ 0.022 $M_{sun} @ n ~ 2.5 \text{ x} 10^4 \text{ cm}^{-3}$

Density structure of ionized gas of the ring from optical spectroscopic data (Mattila+ 2010)

 $M_{ra} \sim 0.058 M_{sun}$

 $\sim 0.046 \text{ M}_{sun}^{3}$ @ n ~ 10³ cm⁻³ and n ~ 3 x 10³ cm⁻³ ~ 0.012 M_{sun} @ n ~ 3 x 10⁴ cm⁻³

~ 95% of the ring material has been shocked at the current time (2014)

CAPA

Lightcurves

Each image is normalized to its maximum

X-ray spectra in 2013 (XMM-Newton)

Abundances from Zhekov+ (2009)ISM Absorption:2.35e21 cm-2 (Park+ 2006)Distance:51.4 kpc (Panagia 1999)

X-ray spectra in 2001 (XMM-Newton)

S. Orlando - The X-ray Universe 2014

X-ray spectra in 2028 (Athena+)

Abundances from Zhekov+ (2009)		
ISM Absorption:	2.35e21 cm ⁻² (Park+ 2006)	
Distance:	51.4 kpc (Panagia 1999)	

Dublin, Ireland, June 2014

CAPA

3D hydrodynamic model describing the evolution of SN 1987A from the immediate aftermath of the SN explosion (~ 20 hrs) to its expansion in the SNR high spatial resolution and accounting of all relevant physical processes

- Model validation: comparison with observations
 - observed bolometric lightcurve of the SN explosion (first 150 days);
 - X-ray lightcurves during the interaction of the SNR with the surrounding CSM;
 - low-resolution spectra (XMM-Newton/EPIC) at different epochs;
 - physical parameters characterizing the SN explosion and the CSM

- Data interpretation

The model allows to determine the contribution of the different plasma components to the observed emission and offers a unique opportunity for accurate data interpretation; (high-resolution grating spectra)

 Predictions on the future evolution of SNR 1987A Shocked ejecta will dominate the contribution in the X-ray band very soon
87A will allow to probe the structure of the ejecta (clues on the dynamics of the SN explosion)