XMM-Newton Future Operational Ground Segment

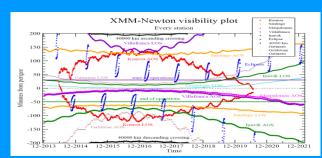
T. Finn, M. Kirsch, J. Martin, F. Schmidt, A. Vasconcellos, N. Pfeil

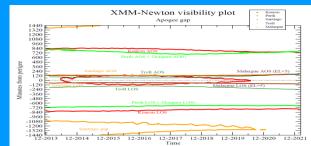
European Space Agency, European Space Operations Centre, Darmstadt, Germany

Introduction

- ith the majority of visibility from the southern hemisphere

- Thermal tensitivity of Instruments may require immediate reaction to on-shoard event Currently XMM is supported routinely by 6 fifteen metre antennas located in Australia (Perth and Dorgarea), South America (Keurou and Santiago de Chile) and Spain (Villafrence and Maspalanas)
- provide additional support in the case of unavailability of Perth or Dongara due to LEOPs or outages


Operational Ground Segment Evolution


Figure 1 : ESTRACK Network

- NMM-Newton has undertaken a number of lifetime enhancing measures in the last few years 4 Wheel Drive : Slews are now performed using all loar instead of three reaction wheels on-board This has resulted in fiel savings of approximately 50%.

 - Anti-Reaction Wheel Coging Strategies Upgrade of the Mission Control System to modern virtual machines running on Solaris 10
 - Pleixible-Perigee passage optimizing the spacecraft attitude to allow more efficient slewing to first scientific target
- The end result is a dramatic improvement in fuel consumption (\sim 50%) and robolescence and/or catastrophic failure extending mission life to potentially ~2028

- Orbital evolution during the next 6 years leads to the opening of a large gap in visibility Mission extension past end-of-2015 decommissioning of Perth

Ground Station Requirements

- Antenna Sensitivity: -170dBW/som

Station		nt-r(mdeg/s)	Azr(mdeg/s)	Elr(mdeg/s)
DONGARA (13m)				
PERTH (15m)				
SANTIAGO (13m)				
KOUROU (15m)				
VILLA2 (15m)				
GOLDSTNE (34m)	4.2			

If the tracking rate is too high key-holing can occur effectively limiting the tracking capability of the antenna

Another key concern is the availability of the station, XMM requires continuous uninterrupted coverage from its reas Villafranca2 has a higher loading due to utilization by Cluster and INTEGRAI

ne final ground station(s) should meet the	following Technical Spo
RX/TX frequency ratio 240/221 in	Requiren
coherent mode	RX/TX Frequ
Polarisation predominantly RHC	Uplink Transmiss
	Downlink Transmi
Pointing accuracy sufficient for search pattern	Modulation T
	Polarisatio
Timing critical for science	EIRP
observations (order of magnitude less than millsecs required)	Ranging To
	Pointing Accu
Ranging critical for orbit	Station Time Assurement

Ground Segment Requirements

Table 2 : Station Specifications

Ground Segment Architecture Overview

ust be guaranteed to maximise scientific return

CASE	Coverage	2016	2017	2018	2019
1	Full Orbit Support	44:00 hours	44:00 hours	44:00 hours	44:00 hours
2	Full Perth Replacement	24:00 hours	24:24 hours	24:36 hours	23:40 hours
3	Partial Perth Replacement (NNO available)	15:00 hours	14:00 hours	16:30 hours	12:20 hours

TMTCS - Handles TC & TM frames across the SLE IFMS – Modulates TC onto carrier and demodulates TM

Conclusions

- XMM-Newton in excellent shape with all units both payload and service module operating
- Successful implementation of 4WD greatly extends potential operational life

- **Robust Requirement defined for Public Tender**
- operation and reduce mission overheads
- Winter eclipse season

References

Figure 6 : New Norcia Deep Space Network Station

- aring Noise Detection, Modelling and Mitigation Measures on ESAs N-Ray Observatory XMM-Newton, Kirsch, Proceeding of 9th GNNC Conference 2014, AAS Rocky Mountain Section 4WD Implementation for XMM_Newton, F. Schmidt, Proceeding of 13th SpaceOps Conference 2014, JPL
- Proceeding of 13th SpaceOps Conference 2014, JPI
- eOps Conference 2014, JPI