SPECTROSCOPIC EVIDENCES FOR A LOW-MASS BLACK HOLE IN SWIFT J1753.5-0127

Vitaly Neustroev (University of Oulu)
Collaborators

- University of Oulu:
 - Alexandra Veledina
 - Juri Poutanen
 - Sergey Tsygankov
 - Jari Kajava

- OAN SPM (Mexico):
 - Sergey Zharikov

- AAVSO:
 - George Sjoberg

The X-ray Universe 2014 (Dublin, Ireland)
Black Holes and mass distribution of compact objects

According to the current convention, the black holes are compact objects, whose measured masses exceed the limit of $3M_\odot$. (Belczynski et al., 2012)
An atypical X-ray transient system: the outburst was reported on 2005 May 30 and is still on-going (already 9 years!).

SWIFT J1753.5−0127 shows, in an optical light curve, relatively strong modulations with a period of 3.24 h. They were attributed to a superhump period (Zurita et al. 2008).

Observational properties evidence that the binary hosts a black hole. However, the mass of the primary was not dynamically measured.
Double-peaked Hα and He II 4686 lines were observed immediately after the initial outburst (Torres et al. 2005a, 2005b).
Optical spectra: no features

Cadolle Bel et al. (2007): 2005 August 11

New Observations

- **Far-UV HST/COS spectroscopy:**
 - October 8, 2012: 2 orbits (~4000 sec)
 - The Far-UV G140L grating (spec. resolution ~0.5 Å)
 - October 2, 2012 (Froning et al. 2013)
 - The Near-UV G230L grating

- **OAN SPM optical spectroscopy:**
 - August 2013: 54×15 min spectra (~4000–7000 Å)

- **Johnson- Cousins BVRI photometry**
 - Several sets (2012-2013)
Far-UV HST/COS spectrum

The spectrum is dominated by broad and double-peaked emission lines of C IV and He II. All absorption lines are of interstellar origin.
Optical spectrum

The X-ray Universe 2014 (Dublin, Ireland)
Optical spectrum
Optical photometry (V and i filters)
The power spectra are dominated by a peak at \textbf{2.85 hr}, that is close to the one-day alias of Zurita et al.'s period.
Radial Velocity of the Donor star

Trailed spectrum shows sinusoidal trails of absorption and emission features.
Cross-correlation

CCFs show very strong and distinct peak
Radial Velocity of the Donor star

K_{2,o} = 382 \pm 8 \text{ km/s}
Emission lines are now much wider than during Torres et al.’s observations.

The lines are **VERY** wide.

Peak-to-Peak separation:

- $\text{H}\alpha$ (Torres) -> 1200 km/s
- $\text{H}\alpha$ -> 1650 km/s
- He II 4686 -> 2660 km/s
- He II 1640 -> 3200 km/s
Emission line profiles

The lines have very steep wings.

The shape of the double-peaked profile wings is controlled by the density distribution of the emitting atoms:

\[f(r) \propto r^{-b} \]

\(b \) is usually in range of 1—2, rarely being less than 1.5.
Emission line profiles

\[A0620 - 00: \ b \approx 1.5 \]

\[XTE J1550 - 564: \ b \approx 2.0 \]

Johnston et al. 1989

Orosz et al. 2002
The X-ray Universe 2014 (Dublin, Ireland)
Emission line profiles

\[f(r) \propto r^{-b} \]

\(b \) is usually in range of \(1-2 \), rarely being less than 1.5

In Swift J1753 \(b \approx 0.5 \)
Orbital variability of emission lines

Equivalent Widths

The X-ray Universe 2014 (Dublin, Ireland)
Doppler Tomography

Asymmetric structure

The X-ray Universe 2014 (Dublin, Ireland)
System Parameters

- Mass Function:

\[f(M) = \frac{K_2^3 P_{\text{orb}}}{2\pi G} = \frac{M_1^3 \sin^3 i}{(M_1 + M_2)^2} \]

- The secondary star is likely irradiated by the X-ray source

- \(K_2 \) must be corrected!
 \(K_{2,o} / K_2 \approx 0.9 \)

- \(f_o(M) = 0.69 \pm 0.04 \, M_\odot \)

- \(f(M) \lesssim 0.95 \, M_\odot \)

One of the lowest measured mass function for a BH in a LMXB!

The X-ray Universe 2014 (Dublin, Ireland)
Assumptions:

- The secondary star fills its Roche lobe.
 \[M_2 = 0.1-0.3 \, M_\odot \]
- The double-peaked emission lines originate in an accretion disc.
- The Keplerian velocity in the disc:
 \[v = \sqrt{\frac{GM}{R}} \]
- The outer parts of a large accretion disc are under the gravitational influence of the secondary star, which prevents the disc from growing larger than \(R_{\text{max}} \):
 \[\frac{R_{\text{max}}}{a} = \frac{0.6}{1 + q} \]
System Parameters

- Combine with Kepler’s third law and get:

\[(M_1 + M_2) \sin^3 i = \frac{0.074PV_{out}}{G}\]

- Adopting Torres et al.’s \(V_{out} = 600 \text{ km/s}\), we obtain:

\[(M_1 + M_2) \sin^3 i = 1.2M_☉\]
Constraints on the inclination

- The emission line are strongly dependent on orbital inclination:
 - low inclination systems show spectra mainly in absorption (La Dous, 1991).
 - Intermediate-to-low inclination systems show P Cyg profiles and/or blueshifted deep absorptions.
- Strong photometric and spectroscopic orbital variability.
Constraints on the inclination

\[i = 30^\circ \quad i = 40^\circ \quad i = 50^\circ \quad i = 60^\circ \]

The X-ray Universe 2014 (Dublin, Ireland)
Constraints on the inclination

- The emission line are strongly dependent on orbital inclination:
 - Low inclination systems show spectra mainly in absorption (La Dous, 1991).
 - Intermediate-to-low inclination systems show P Cyg profiles and/or blueshifted deep absorptions.
- Strong photometric and spectroscopic orbital variability.

- **SWIFT J1753.5-0127 should be a relatively high inclination system (>40°)**
System Parameters

Measurements and Assumptions:

- Orbital period: 2.85 h
- The secondary star fills its Roche lobe: \(M_2 = 0.1 - 0.3 \, M_\odot \)
- Inclination \(i > 40^\circ \)
- \(M_1 > 2.5 \, M_\odot \)

Constrained system parameters

- \(i = 40^\circ - 45^\circ \ (51^\circ) \)
- \(M_1 / M_\odot = 2.5 - 3.1 \ (4.1) \)
- \(q = 0.04 \ (0.03) - 0.12 \)
- \(a / R_\odot = 1.4 - 1.53 \ (1.67) \)
For the observed K_2, upper limit for M_1 is $3.1M_\odot$ at a 68% confidence and $3.3M_\odot$ at 95% confidence.

For the K-correction applied, these limits are $4.0M_\odot$ and $4.3M_\odot$, respectively.
Mass distribution of compact objects

Belczynski et al., 2012

SWIFT J1753.5−0127

The X-ray Universe 2014 (Dublin, Ireland)
Mass distribution of compact objects

Özel et al., 2010

The X-ray Universe 2014 (Dublin, Ireland)
We report the re-appearance of the broad emission lines in the previously featureless optical spectrum.

We measured a possible orbital periodicity of $2.85 \, \text{h}$, significantly shorter than the reported $3.2 \, \text{h}$ periodic signal by Zurita et al. (2008).

We estimated the system parameters of Swift J1753.5–0127. We constrain the BH mass to be below $4.3M_\odot$.

Thus, SWIFT J1753.5–0127 is a BH binary that has one of the shortest orbital period and hosts probably one of the smallest stellar-mass BH found to date.
A schematic representation of the suggested geometry

THANK YOU!