Suzaku observations of ultraluminous Durham X-ray sources in nearby galaxies University

Wasutep Luangtip^{*}, Timothy P. Roberts & Chris Done

Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

Ultraluminous X-ray sources (ULXs) are extra-galactic X-ray sources for which the observed luminosity in the 0.3 - 10 keV band reaches or exceeds the Eddington limit for a ~10 M_{\odot} black hole (L_{x} > 10³⁹ erg s⁻¹). Recent results indicate that the majority of ULXs are stellar remnant black holes accreting material at or above the Eddington rate, rather than sub-Eddington accretion onto intermediate mass black holes. However, precisely how these ULXs accrete material at a super-Eddington rate remains an open question. In this work, we present the results of an analysis of 16 high quality spectra (> 7000 counts) extracted from a sample of 10 ULXs detected in nearby galaxies (D < 4.2 Mpc), using Suzaku data. We confirm that these high quality datasets require two component models to provide an adequate description of the spectra. We examine a range of physical models to describe the data. Using a multicolour disc blackbody (MCD) plus Comptonised corona model allows the properties of the putative corona constituting the hard component to be investigated. Alternatively, fitting by a blackbody (BB) plus slim disc model allows a simple calculation of an outflowing wind radius, assuming a photosphere at the base of the wind provides the soft component. Finally, modelling the hard spectral component using a Kerr black hole model, we demonstrate that the mass of the black hole powering these ULXs can be estimated and is found to be relatively low (~ 10 M_{\odot}).

^aSource luminosity in the 0.3 – 10 keV band. ^bThe ULX spectral state as defined by Sutton et al. (2013), i.e. broadened disc (Disc), hard ultraluminous (HUL) or soft ultraluminous (SUL). °The mass of black hole powering the ULX (see below). *Highly absorbed ULXs, the classification may be uncertain.

Energy (keV) Figure 1. Examples of ULX spectra fitted by MCD plus power-law model.

We begin the analysis by modelling the ULX spectra with a simple, double component model - MCD plus power-law. The model works effectively to describe the spectra. The fitting result is used to classify all ULX spectra into three categories following the method of Sutton et al. (2013): broadened disc (Disc), hard ultraluminous (HUL) and soft ultra luminous (SUL), as shown in column 3 of Table 1.

Mass of black hole powering ULXs

We start by assuming that the soft spectral component represents the emission from the photosphere at the base of an outflowing wind; and that the hard emission is from the innermost parts of the accretion disc. We model these two components using a BB model and a relativistic accretion disc model (KERRBB). This provides a good fit, and estimates the black hole masses as ~ $3 - 22 M_{\odot}$ (column 4 of Table 1), implying that ULXs are powered by stellar mass black holes. We note that the black hole spin is unconstrained in this model fitting.

Disc plus comptonisation model

Figure 2. Corona's temperature versus its optical depth (the seed photon temperature is free from the disc temperature).

photon temperature to the disc temperature - similar to previous results (e.g. Vierdayanti et al. 2010, Pintore et al. 2012, 2014). However, the anti-correlation disappears when the seed photon temperature is untied (Fig. 2), suggesting an artificial relationship. References

Fitting the data by a MCD plus comptonisation model presuming that the hard component is instead provided by a comptonising corona - a similar result to the former studies is found; the model infers a cool and optically thick corona whilst the soft component is a cool disc ($kT_{disc} \sim 0.2$ keV). A temperature – optical depth anti-correlation is present if we tie the corona's seed

Outflowing wind?

outflowing

Ъ

NGC1313 NGC1313

M33 X-8 M81 X-6

Alternatively, we can model the spectra by a BB plus slim disc slim model. Assuming that accretion disc provides the hard component, we are able to estimate a provisional size for the outflowing wind by calculating a surface area of the (unabsorbed) BB component we use to model the soft emission. We convert the surface area into a wind radius by assuming spherical geometry for the wind with 80% covering fraction. The results are shown in Fig. 3. Discounting the

data points associated with IC 342 X-2 (for which the absorption correction is both large and so very uncertain), there appears to no strong relationship between putative wind radius and luminosity. This does not support the L ~ T^{-3.5} relation reported for some ULXs (e.g. Kajava & Poutanen 2009).

• Kajava J., Poutanen J., 2009, MNRAS, 398, 1450 • Pintore F., Zampieri L., 2012, MNRAS, 420, 1107 • Pintore F., et al., 2014, MNRAS, 439, 3641• Sutton A. D., Roberts T. P., Middleton M. J., 2013, MNRAS, 435, 1758 • Vierdayanti K., Done C., Roberts T. P., Mineshige S., 2010, MNRAS, 403, 1206

*wasutep.luangtip@durham.ac.uk

Unabsorbed luminosity (erg s⁻¹)

Figure 3. The radius of outflowing wind

against ULX luminosity.