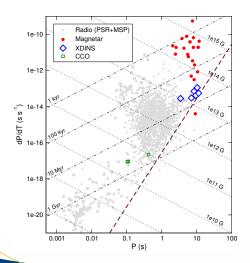


The neutron star in the Carina Nebula

New XMM-Newton observation of 2XMM J104608.7-594306

Adriana Mancini Pires Leibniz-Institut für Astrophysik Potsdam


May 23, 2013

Pires, Motch, Turolla et al.

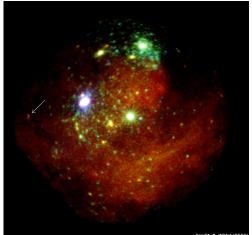
The Fast and the Furious; XMM-Newton Science Workshop, 2013

X-ray dim INSs (aka the Mag 7)

Local group of INSs sharing peculiar properties

- purely thermal spectrum
- slow rotators, $P \sim 3 10 \, s$
- ▶ high B ~10¹³ 10¹⁴ G
- $\blacktriangleright L_{\rm X} \gg \dot{E}$

Additional heating of NS crust by means of field decay

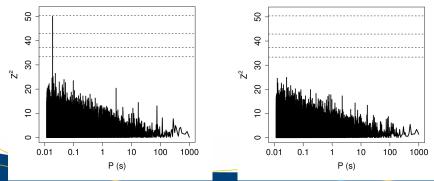

- ► different *B*-*P* evolution
- cooling rate
- detection in X-rays

Is there any XDINS beyond the Gould Belt?

- Why so many XDINS in the Solar vicinity?
- How numerous are they in the Galaxy?

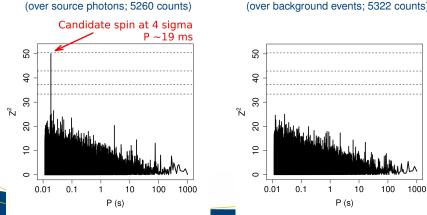
New candidates to be searched at faint fluxes

- J1046: discovered in the direction of Carina
- Overall properties: younger and more distant XDINS?



Results of AO9 observation (1)

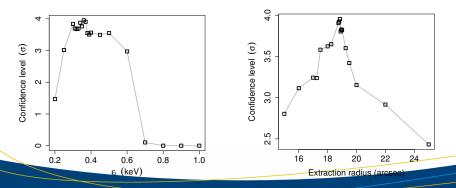
- Goal: better characterize the spectrum; look for pulsations
- ► Blind search, broad frequency range P = 0.011 1000 s (90 ks in AO9)
- \triangleright Z² tests: different energy bands, sizes of extraction region


(over background events; 5322 counts)

Results of AO9 observation (1)

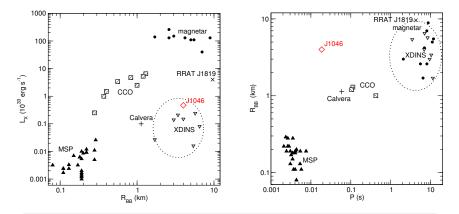
- Goal: better characterize the spectrum; look for pulsations
- Blind search, broad frequency range P = 0.011 1000 s (90 ks in AO9)
- \triangleright Z² tests: different energy bands, sizes of extraction region

(over background events; 5322 counts)

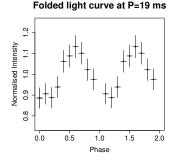


Results of AO9 observation (2)

- Significance of detection sensitive to the choice of search parameters
- Power affected even by randomization in energy (standard processing of event file)
- Is the source signal easily "lost" in the background?


...and of extraction radii

Spin too fast for a XDINS


Spectro-rotational properties of thermally emitting INSs

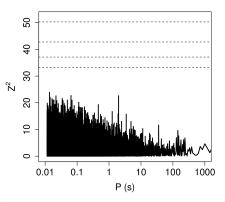
J1046: similar spectral properties to XDINS, how to explain the fast spin? Recycling in a binary? Very low spin down? Relation with old CCO/Calvera?

New XMM-Newton observation (AO11)

Goal: confirm candidate period and constrain the INS spin down

- ▶ $t_{\rm exp} \sim 85 \, {\rm ks}$
- 5000 to 6000 counts (optimal energy band, extraction region etc)
- pulsed fraction of 14% ($Z^2 \sim$ 50)
- expected detection at 5 σ (no blind search)
- fine-tuning to increase S/N
- second observation 2 yr apart

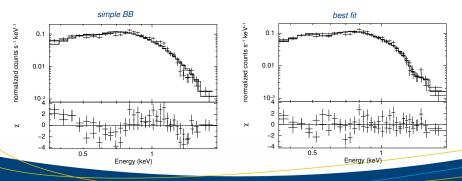
 \dot{P} > 2.5 × 10⁻¹⁶ s s⁻¹; $B_{\rm dip}$ > 6–7 × 10¹⁰ G (2 σ)


AIF

Results of timing analysis

P = 19 ms not confirmed – no significant signal

- New data with similar S/N ratio as in AO9
- Extensive searches 2 Hz around the detected periodicity
- Blind search (full frequency range) with best parameters as found for AO9 data



Upper limit: $p_{\rm f} \sim$ 12% (2 σ); $P = 0.0114 - 10000 \, {\rm s}$

Spectrum of a faint XDINS

- Soft and thermal spectrum; features around 0.6–0.7 keV and 1.35 keV
- Power law tail below 1% of source luminosity
- Best model with kT ~ 130 eV + Gaussian absorption at 1.35 keV (first feature likely related to local oxygen overabundance in Carina)

Fast spin not confirmed in AO11 data

- spurious/statistical artifact?
- transient phenomenum? change in pulsed fraction?

Spectrally consistent with a more distant XDINS

- thermal spectrum with absorption feature(s)
- no magnetospheric emission
- true spin of few seconds, as for the M7?
- pulsed fraction below the sensitivity of our data?

Presence in Carina constrains the neutron star age

- evidence for past supernova (e.g. Townsley et al. 2011)
- association with runaway star (Ngoumou et al. 2013)

AIF

Thank you!

Acknowledgments to my collaborators Christian Motch, Roberto Turolla, Axel Schwope, Sergei Popov and Aldo Treves

Pires, Motch, Turolla et al.

The Fast and the Furious; XMM-Newton Science Workshop, 2013