Probing the cooling of the Central Compact Object in the Cas A supernova remnant

B. Posselt Pennsylvania State University

G. Pavlov (PSU)
V. Suleimanov (U Tübingen)
O. Kargaltsev (G. Washington U)

Cassiopeia A SNR and CCO

SNR

Distance: 3.4 (+0.3/-0.1) kpc Age: ~ 330 years

CCO no pulsations detected Pulsed fraction limits: < ~30% for P> 0.3 s < 16% for P> 0.68 s

Spectrum:

• dominated by thermal emission

small emission area for H atmosphere or blackbody models
emission area ~ NS surface area for carbon atmospheres models

Reed et al. 1992, Ashworth 1980, Mereghetti et al. 2002, Pavlov & Luna 2009, Ho & Heinke 2009

The temperature decline of the Cas A CCO

Dedicated CCO observations

October 2006 (61.7 ks) **May 2012** (63.4 ks)

ACIS-S3 sub-array mode (frame time 0.34s pile-up < 2%) Spectra: binned with SNR>10; Energy range: 0.3 - 5.0 keV

Atmosphere Models

Hydrogen atmosphere (NSA, B<10¹⁰G)
 e.g., Pavlov & Luna 2009
No significant temperature change
Emission Area: ~10% of NS surface

Carbon atmosphere models

Suleimanov et al.
 (in preparation)

Fit results for 2006 data consistent with those by Ho & Heinke 2009

Important spectral model parameters

Additional influence on spectral fit results: Effects due to the ACIS contamination model uncertainties in the used calibration

Dependencies of the uncertainty of ΔT

Check a simple picture: linear decline

The influence of the ACIS contamination

Contamination buildup changed in 2012 (likely accelerated) Uncertainty in calibration of the contamination model ~10% at 0.67 keV

Absorbed Fluxes
[10^{-13} erg cm² s⁻¹]
N(H)²⁰⁰⁶ ≠ N(H)²⁰¹²2012 Cont. +10% : 7.34 (±0.18)
2012 Cont. +10% : 7.34 (±0.18)2012 (±0.18)
6.99 (±0.18)00</

Plots for: Distance fixed at 3.4 kpc, $N(H)^{2006} = N(H)^{2012}$

Conclusions

No significant temperature change between 2006 and 2012 (carbon atmospheres, hydrogen atmospheres)

> Allowing N(H) to change between epochs results in less significance of any temperature difference

> Absolute temperature uncertainty much larger than the uncertainty of temperature difference

Indication of slight flux decrease (~4% in 6 years)
 (however, just not significant at 90% confidence)

Good knowledge of calibration uncertainties important (contamination, piled-up data in Heinke & Ho 2010)

more questions ? → posselt @ psu.edu