PARTICLE ACCELERATION IN THE FURIOUSLY FAST SHOCKWAVES OF SN 1006

Brian J. Williams (NASA/GSFC)

on behalf of

Satoru Katsuda P. Frank Winkler Knox S. Long Robert Petre Stephen P. Reynolds

THE LAST TALK!!!

Brian J. Williams (NASA/GSFC)

on behalf of

Satoru Katsuda P. Frank Winkler Knox S. Long Robert Petre Stephen P. Reynolds

SN 1006 is, literally, the poster-child for particle acceleration

Motivation for Chandra Large Project

Exposure map of previous Chandra observations, depth varies from 140 ks to 20 ks, overlaid with our new observations in blue

Motivation for Chandra Large Project

- Fundamental questions:

What mechanism limits e⁻ acceleration?

- How do e⁻ acceleration rate & B-field amplification vary with azimuth?
- How does B-field strength evolve behind shock?

- Chandra resolution is a must for: 1) shock proper motions, 2) detailed study of synchrotron emission, 3) small-scale ejecta structure

- AO-13 program (PI: P.F. Winkler) now complete. Observed entire remnant to minimum depth of 100 ks; more in most places; total time ~700 ks

Exposure map of previous Chandra observations, depth varies from 140 ks to 20 ks, overlaid with our new observations in blue

700 ks of SN 1006 from Chandra

Chandra press release image, April 2013

0.5-1.2 keV 1.2-2.0 keV 2.0-7.0 keV ~6 million counts

Wednesday, May 29, 13

- X-rays in NE & SW entirely nonthermal, well-fit by synchrotron model, srcut

- srcut assumes power-law distribution of e⁻ energies (predicted by DSA theory), up to characteristic value E_{max}, v_{roll} is peak frequency emitted by these e⁻¹s

- Long+ 2003 found that rims are a few x 10" in width, v_{roll} of 6.9 x 10¹⁷ Hz implies E_{max} for e⁻¹s of ~50 $B_{10}^{1/2}$ TeV.

106

106

105

104

10³

10²

101

Chandra (2012)

Hα (courtesy F. Winkler)

Spitzer IR

- Often considered "prototypical" case of Type Ia SNR

- High gal. latitude; nearby (2.2 kpc), very large (~30' diameter); low-absorption = well-studied

- Very low density environment, uniform expansion(?)

Chandra (2012)

Hα (courtesy F. Winkler)

Spitzer IR

- Often considered "prototypical" case of Type Ia SNR

- High gal. latitude; nearby (2.2 kpc), very large (~30' diameter); low-absorption = well-studied

- Very low density environment, uniform expansion(?)

Winkler, **BJW+**, in prep.

Chandra proper motions over 9year baseline; known distance = shock velocity

- Often considered "prototypical" case of Type Ia SNR

- High gal. latitude; nearby (2.2 kpc), very large (~30' diameter); low-absorption = well-studied

- Very low density environment, uniform expansion(?)

3000 km/s (Katsuda+ 2013)

Winkler, **BJW**+, in prep.

Optical Ha image

Spitzer 24 µm

NW filament in SN 1006 is:

- a) dominated by thermal X-ray emissionb) strongest region of optical emission, by farc) only place where IR emission from warm dust is seen
- d) all of the above

What is different about NW of SN 1006?

Northwest Filament

- <u>IR emission is sensitive</u> <u>function of post-shock density</u>

- IR spectrum implies postshock density = 1 cm⁻³ (Winkler, **BJW**+ 2013), consistent with optical measurement (Heng+ 2007)

Spitzer IRS spectrum from NW filament of SN 1006

Northwest Filament

- <u>IR emission is sensitive</u> <u>function of post-shock density</u>

- IR spectrum implies postshock density = 1 cm⁻³ (Winkler, **BJW**+ 2013), consistent with optical measurement (Heng+ 2007)

Spitzer IRS spectrum from NW filament of SN 1006

- Here be dragons denser ISM

Perhaps nothing paradigm-shifting about SNIa, but means significant ISM density inhomogeneities exist on parsec scales, even 500 pc above Galactic plane

But localized regions of nonthermal emission exist in NW as well! **In these regions, v**

= 5000 km/s, same as nonthermal-dominated regions in NE

 $v_s = 3000$ km/s, X-ray emission thermal, but little regions are nonthermal with $v_s = 5000$ km/s

v_s = 5000 km/s, X-ray emission nonthermal

Shock speed does **not** seem to be primary determiner of thermal vs. nonthermal emission (see poster on RCW 86 by Dan Castro for synchrotron emission from slower shocks)

Shock speed does **not** seem to be primary determiner of thermal vs. nonthermal emission (see poster on RCW 86 by Dan Castro for synchrotron emission from slower shocks)

Must be more related to B-field

Wednesday, May 29, 13

Filament widths are energy-dependent

The Nonthermal Filaments: Probing the Bfield and Electron

Ressler,...,**BJW**+, in prep

Filament widths are energy-dependent

The Nonthermal Filaments: Probing the Bfield and Electron

Ressler,...,**BJW**+, in prep

<u>Preliminary results:</u> Filaments widths due to synchrotron losses, not B-field damping; strong B-field amplification favored

- Unlike RX J1713 and Cas A, significant flux variations are not seen from NE shell of 1006

 Does <u>NOT</u> imply weak B-field; could simply be uniform medium

- With new data, we can now examine other parts of shell...

No time-variability in synchrotron X-rays

- Proper motions = 3000/5000 km/s in thermal/nonthermal regions, respectively
- Densities in NW ~order of magnitude higher than elsewhere
- Filament widths energy-dependent, can be explained by synchrotron losses
- No time variability in nonthermal X-rays