Supernova Remnants with magnetars

Jonatan Martín Nanda Rea Diego F. Torres Harsha Kumar Samar Safi-Harb

Outline

- Origin of magnetars: two possible theories
- Looking for differences: spectroscopy
- Looking for differences: photometry
- Conclusions

Origin of magnetars

Magnetic field conservation:

(e. g. Ferrario & Winkramasinge 2006, Spruit 2008)

For a progenitor with ~ 10Msun

 → B-flux ~ 5 x 10²⁷ G cm².
 Sufficient for a magnetar, but very optimistic.

Alpha-dynamo effect:

(e.g., Duncan & Thompson, 1992)

- vigorous convection during ~10s after the formation of the neutron star produces the high magnetic field.
- It causes an excess of rotational energy not detected yet in the SNR (Vink & Kuiper 2006).
- This energy can be emitted in others channels (e.g., neutrinos)

Do we find differences in the ionization levels of the lines between SNRs with magnetars and the rest?

- We analyse four SNRs: Kes 73, CTB 109, N 49 (LMC) & Kes 75 (Chandra archival analysis, Kumar & Safi-Harb 2008)
- We use XMM-Newton data: EPIC-PN & EPIC-MOS in full-frame

mode.	Total exp. Time (s)	PN	MOS 1	MOS 2
	Kes 73	12630	12145	12143
	CTB 109	40546	106340	132824
	N 49	72172	4652	5771

- Reduction package: SAS v11.0.0
- Analysis package: HEASOFT v6.13 (XSPEC v12.8.0)

Kes 73 (AXP 1E 1814-045)

- B ~ 7.3 x 10¹⁴ G
- T ~ 4 kyr

Dimensions: 4.5' x 4.7' Distance: 7.5-9.8 kpc

CTB 109 (AXP 1E 2259+586)

- B ~ 5.9 x 10¹³ G
- T ~ 229 kyr

Dimensions: 30' x 45' Distance: 3.2 kpc

N 49 (SGR 0526-66)

- B ~ 7.3 x 10¹⁴ G
- T ~ 2 kyr

Dimensions: 1.5' x 1.5' Distance: 50 kpc

Kes 75 (PSR J1846-0258)

- B ~ 4.9 x 10¹³ G
- T ~ 0.7 kyr

Dimensions: 3.7' x 3.4' Distance: 21 kpc

SNR	Galaxy	Age (yr)	O VII $(7 \rightarrow 1)$ (0.5686 KeV)	Electrony O VIII $(3,4 \rightarrow 1)$ (0.6535 KeV)	ment $O \ VIII$ $(6, 7 \rightarrow I)$ $(\theta.7746 \ KeV)$	Ne IX $(7 \rightarrow I) + Fe L$ (0.8-1.0 KeV)
Kes73 CTB109 Kes75 N49	MW MW MW LMC	1100-1500 7900-9700 900-4300 5000	x	x		x x
G1.9+1.3 Kepler Tycho SN1006 Cas A MSH11-54 Puppis A B0509-67.5	MW MW MW MW MW MW LMC	$110-170 \\ 408 \\ 440 \\ 1006 \\ 316-352 \\ 2930-3050 \\ 3700-5500 \\ 400 \\$	x x x x x x	x x x x x x	x x x x	x x x x x x
			Ne X (3,4 → 1) (1.0220 KeV)	Ne X (6,7 → 1) (1.2110 KeV)	Mg XI (2,5,6,7 \rightarrow 1) (1.3522 KeV)	Mg XII (3,4 → 1) (1.4726 KeV)
Kes73 CTB109 Kes75 N49	MW MW MW LMC	1100-1500 7900-9700 900-4300 5000	x x	x	x x x x	x x x
G1.9+1.3 Kepler Tycho SN1006 Cas A MSH11-54 Puppis A B0509-67.5	MW MW MW MW MW MW LMC	$110-170 \\ 408 \\ 440 \\ 1006 \\ 316-352 \\ 2930-3050 \\ 3700-5500 \\ 400 \\ $	x x x	x	x x x x x x x	x x

23/05/2013

			Si XIII (2,5,6,7 → 1) (1.8650 KeV)	Si XIV (3,4 → 1) (2.0061 KeV)	Si XIII (13 → 1) (2.1826 KeV)	S XV (2,5,6,7 \rightarrow 1) (2.4606 KeV)
Kes73 CTB109 Kes75 N49	MW MW MW LMC	1100-1500 7900-9700 900-4300 5000	x x x x	x	x x x	x x x x
G1.9+1.3 Kepler Tycho SN1006 Cas A MSH11-54 Puppis A B0509-67.5	MW MW MW MW MW MW LMC	$110-170 \\ 408 \\ 440 \\ 1006 \\ 316-352 \\ 2930-3050 \\ 3700-5500 \\ 400 \\$	x x x x x x x x x x	x x x	x x x x x	x x x x x x x x x
			S XV $(13 \rightarrow 1)$ (2.8840 KeV)	Ar XVII (2,5,6,7 \rightarrow 1) (3.1041 KeV)	Ca XIX (2,5,6,7 → 1) (3.9024 KeV)	Fe XXV (2,5,6,7 \rightarrow 1) (6.4-6.8 KeV)
Kes73 CTB109 Kes75 N49	MW MW MW LMC	1100-1500 7900-9700 900-4300 5000	x x x	x x x	х	x
G1.9+1.3 Kepler Tycho SN1006 Cas A MSH11-54 Puppis A	MW MW MW MW MW	110-170 408 440 1006 316-352 2930-3050 3700-5500	x x x	x x x x x x	x x x x x x	x x x x x
B0509-67.5	LMC	400		x	x	x

23/05/2013

23/05/2013

J. Martín

- We do not see differences in the ionization levels of the lines.
- The lines detected in all SNRs are quite standard.
- Same conclusion as Vink & Kuiper 2006 using a different analysis.

Are SNRs with magnetars brighter in X-rays?

- We compiled data of SNRs including parameters as its central source, the age, luminosity, radius, etc.
- In the case that they have a PSR or a CCO with known period and period derivative, we include also the magnetic field and the spin-down luminosity.
- This data compiles all the X-ray SNR with an associated identified CS.

- There is a hint that SNRs with magnetar are brigther (in a general view)
- G011.2-0.3 is a clear exception
- SNRs with CCO are also very bright. Maybe they are related with high B-fields buried inside the crust.

- There is a hint that SNRs with magnetar are brigther (in a general view)
- G011.2-0.3 is a clear exception
- SNRs with CCO are also very bright. Maybe they are related with high B-fields buried inside the crust.

- Spearman correlation probability: 0.16
- Kendall correlation probability: 0.13
- There is a hint (but not significant) correlation
 between the Xray luminosity and the magnetic field of the neutron star

- Spearman correlation probability: 0.16
- Kendall correlation probability: 0.13
- There is a hint (but not significant) correlation
 between the Xray luminosity and the magnetic field of the neutron star

J. Martín

Conclusions

- We have performed a spectral analysis of Kes 73, CTB 109, N 49 & Kes 75 using XMM-Newton and Chandra data.
- We do not see differences in the ionization levels of the lines between SNRs with magnetars and the rest.
- There is a hint that SNRs with magnetar are more luminous in X-ray than the others (at the same age), but it is not statistically significant yet.