A unified polar cap/striped wind model for pulsed radio and gamma-ray emission in pulsars

Jérôme Pétri

ESAC Madrid

< □

The striped wind

2 Relation between geometry and light-curves

3 Gamma-ray luminosity

Jérôme Pétri (Observatoire de Strasbourg)

Relation between geometry and light-curves

Gamma-ray luminosity

Jérôme Pétri (Observatoire de Strasbourg)

The structure of the striped wind

Near the star : a magnetic dipole

At large distances : striped wind (Bogovalov 1999)

- $\vec{\Omega}$: rotation axis
- χ : magnetic axis inclination with respect to Ω
- ζ : line of sight inclination with respect to $\vec{\Omega}$
- hot and magnetized plasma in the sheet relativistic beaming $\Gamma_{\text{vent}}\gg 1$

pulsed emission

High-energy emission from gamma-ray pulsars

Objectives

- high-energy pulsed emission (MeV/GeV)
- spectral variability of several gamma-ray pulsars.

Processes

- synchrotron radiation from hot and magnetized plasma in the stripe
- inverse Compton with target photons
 - cosmic microwave background, CMB
 - synchrotron photons from the nebula, X-ray
 - $\bullet~$ thermal emission from the neutron star surface, black body with $T_{bb} \approx 10^{6}~\text{K}$
 - photons from companion star

Applications

- isolated pulsars => gamma ray pulsars
- binary pulsars => PSR B1259-63
- Link to other wavelengths?
 - polar cap for radio emission : phenomenological
 - striped wind for optical up to gamma rays
 - \Rightarrow geometry could be defined (χ and ζ).

Processes

• synchrotron radiation from hot and magnetized plasma in the stripe

Applications

isolated pulsars => gamma ray pulsars

Processes

photons from companion star

Applications

binary pulsars => PSR B1259-63

Gamma-ray luminosity

Jérôme Pétri (Observatoire de Strasbourg)

Relation between radio and gamma-ray pulses : phase-plot

Radio time lag and gamma-ray peak separation

From pure geometric considerations

Gamma-ray peak separation Δ

 $\cos(\pi \Delta) = |\cot \zeta \cot \chi|$

Radio time lag δ

$$\delta\approx\frac{1-\Delta}{2}$$

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

(Pétri, MNRAS, 2011)

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ, ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

- S-shape around $\zeta = 90^{\circ}$ reflects emission from current sheets
- two symmetrical spots corresponding to emission from the two polar caps (north & south pole separated by half a period)
- several light-curve combinations possible depending on geometry χ,ζ

Radio and gamma-ray light-curve fitting

3 Gamma-ray luminosity

Jérôme Pétri (Observatoire de Strasbourg)

What about luminosities?

Assumptions

- synchrotron emission in the stripe
- radiative cooling compensated by reheating due to magnetic reconnection

Main results

the predicted luminosity function

$$L_{\gamma} \approx 2 \times 10^{26} \text{ W} \left(\frac{L_{sd}}{10^{28} \text{ W}}\right)^{1/2} \left(\frac{P}{1 \text{ s}}\right)^{-1/2}$$

condition for pulsed emission

$$\frac{L_{\rm sd}}{P} \geq 10^{27} \, {
m W/s}$$

Force-free magnetosphere

$$L_{\rm sp} \approx \frac{3}{2} L_{\rm dip}^{\perp} \left(1 + \sin^2 \chi\right) \tag{1}$$

=> more realistic formula than the magnetodipole in vacuum.

=> B_{\perp} AND B_{\parallel} constrained.

(Pétri, MNRAS, 2012a)

3 Gamma-ray luminosity

Jérôme Pétri (Observatoire de Strasbourg)

Conclusions & perspectives

Pulsed emission

- high-energy pulsed emission emanating from regions well outside the light cylinder, $r \approx (\text{few} 100) r_{\text{L}}$.
- gamma-ray luminosities from Fermi/LAT second source explained by synchrotron emission in the stripe.

Further investigations

- link between asymptotic toroidal magnetic field and magnetosphere
 - \Rightarrow location where most of the high-energy pulsed emission is expected.
- phase-resolved polarisation properties in X-ray (Crab?)
- possible explanation for gamma-ray binaries?
- deeper multi-wavelength study (anticorrelation in radio and X-rays flux, Hermsen et al., Science, 2013)

