On the X-ray Emission Mechanisms of the Persistent Source and Very Low Fluence Bursts of SGR J0501+4516

Lin Lin

(Sabanci University, Istanbul Turkey) Ersin Gogus, Tolga Guver, Chryssa Kouveliotou

ApJ 761, 2, 132

PersistentShortV.S.ShortEmissionV.S.Bursts

Focus on very low fluence bursts

PersistentShortV.S.ShortEmissionV.S.Bursts

 Focus on very low fluence bursts
Idealized physical models for both persistent emission and bursts spectra

Phenomenological models

Low fluence bursts

 $\sim 10^{-9} \, erg/cm^2$

BB+BB

BB+BB+PLH

keV-1)

cm-2

ceV² (Photons

×

100

Persistent : (BB+BB

or BB+PL) + PL hard

Lin et al. (2012)

Idealized physical models

PersistentShortV.S.ShortEmissionV.S.Bursts

> Focus on very low fluence bursts

Idealized physical models for both persistent emission and bursts spectra

Proper source to study both spectra together

SGR J0501+4516

- P = 5.762 s $\dot{P} = 5.8 \times 10^{-12} \text{s/s}$ $B_{dipol} = 2 \times 10^{14} \text{G}$
- Anti-Galaxy center direction, most likely at the Perseus arm (~2 kpc)

 $R.A. = 05^{h}01^{m}06^{s}.76 decl. = +45^{\circ}16'33''.92$

• Burst active period

~ 2 weeks after 2008 August 22

- XMM-Newton observation: 0560191501
 - > 2008 August 23 (the most burst active day)
 - Exposure 48.9 ks
 - > Study the spectra of burst and underlying persistent emission at the same time

Persistent and bursts selection

- 100 ms binned lightcurve
- Persistent emission: ~5.5 counts per bin; total exposure of 32.7 ks
- Bursts: 2σ over persistent level, ~10 counts per bin, 129 burst bins with total exposure of 8.7 s

Model	$\frac{N_{\rm H}}{(10^{22}~{\rm cm}^{-2})}$	<i>B</i> (10 ¹⁴ G)	kT ^a (keV)	Index	β	τ	χ^2_{ν}/dof
BB+PL STEMS	$\begin{array}{c} 0.91 \pm 0.01 \\ 0.67 \pm 0.02 \end{array}$	2.21 ± 0.07	0.70 ± 0.01 0.38 ± 0.02	2.79 ± 0.04	0.37 ± 0.01	5.0 ± 0.2	0.7657/117 0.7615/116

Persistent emission spectrum

- Galactic $N_{\rm H}$ towards the direction of the source (0.62 or 0.52) $\times 10^{22}$ cm⁻²
- Unabsorbed flux (0.5-6.5 keV) (5.88 ± 0.02) × 10^{-11} erg/s/cm²
- Hot-spot surface area $131 \pm 27 \text{ km}^2$

B-field

Weak bursts stacked spectrum

- combine 129 burst bins into one stack spectrum
- Adopt $N_{\rm H}$, β & τ from the persistent spectrum fit with STEM
- > MBB+RCS

 $kT_{b} = 1.16 \pm 0.04 \text{ keV}$

- The emission area
- 93 ± 10 km², ~7.4% of magnetar surface > Average unabsorbed flux (1.8 ± 0.05) × 10⁻⁹ erg/s/cm² over 30 times of the persistent flux level
- Average luminosity ~10³⁶erg/s

Time resolved burst stacked spectra

 Select 47 relatively stronger bursts, and separate each one into three parts

> rise 25 ms peak decay

 Fit 3 stacked spectra with MBB+RCS model

Time resolved burst stacked spectra

Emission areas for rise, peak and decay parts are: $58 \pm 19,160 \pm 41,118 \pm 29 \text{ km}^2$

Summary

Study X-ray spectra from magnetar with idealized physical models

Persistent - STEMS Bursts - MBB+RCS

Any the connection between the persistent emission and bursts?

Persistent emission and weak bursts ($\sim 2\sigma$) have different spectral shape, hence different origin