Modulating magnetar emission by magneto-elastic oscillations

Michael Gabler Universidad de Valencia / MPA Garching

P.Cerdá-Durán, J.A. Font (Universidad de Valencia), E.Müller (MPA Garching), N. Stergioulas (University of Thessaloniki)

May 23, 2013

QPOs (quasi-periodic oscillations) in magnetar giant flares

Giant flares

- SGR 0526-66 (1978), SGR 1900+14(1998), SGR 1806-20 (2004)
- Peak luminosity
 10⁴⁴ . . . 10⁴⁶ erg/s
- Low frequency modulation
 ⇒ rotation period
 (5...10s)
- High frequency quasi periodic oscillations QPOs

(Israel et al. '05, Strohmayer & Watts '06, Hambaryan et al. '11)

Confirmed QPO frequencies

SGR 1806-20: 18, 26, 30, 92, 150

625, 1840 Hz

SGR 1900+14: 28, 53, 84, 155 Hz

Where do the QPOs come from?

Possible origin of the observed frequencies

- Discrete Shear modes (crust)?
- Alfvén oscillations at the turning points of a continuum (core+crust)?
- Magnetospheric oscillations?

Coupled Crust-Core oscillations

(Glampedakis et al. '06; Levin '07; Van Hoven & Levin '11 & '12;

Colaiuda et al. '10 & '11 & '12; Gabler et al. '11 & '12)

What can we learn from magnetar QPOs?

Constraints by Alfvén oscillations

- Magnetic field strength: $f \sim B$
- Topology of magnetic field inside neutron star
 - Field penetrating the core ?
 - Field confined to crust ?
 - Poloidal vs. toroidal ?
- Probing physics of core
 - Superconductivity ?
 - Superfluidity ?
 - · ..

⇒ constrain the EOS and/or magnetic field

Magneto-elastic QPOs inside the magnetar

 \Rightarrow QPOs at low frequencies $f\lesssim 150\,\mathrm{Hz}$ at $B\sim 0.8\ldots 4 imes 10^{15}\,\mathrm{G}$

Superfluid neutron star core

- Complete entrainment in crust
- ⇒ like normal fluid
 - No entrainment in core: $ho
 ightarrow
 ho_{\it p} \sim 0.05
 ho$
- $\Rightarrow v_A^s = B/\sqrt{\rho_p} \sim 4 \times v_A$
- $\Rightarrow\,$ QPOs at $f\lesssim 150\,\mathrm{Hz}$ at $B\lesssim 10^{15}\,\mathrm{G}$
 - High frequency QPOs (f > 500Hz):
 Resonance between n = 1 shear mode in crust and Alfvén overtone in core
 - Normal fluid case:
 - $B \lesssim 10^{15}\,\mathrm{G}$: strong reflection of QPO at crust-core interface
 - $B>10^{15}$: $B^2\gtrsim \mu_S$ in crust o no n=1 crustal mode

 \Rightarrow Superfluidity seems to be a key ingredient (Gabler et al. 2013)

The exterior - modulating the magnetar emission

Interior

Magneto-elastic QPOs

Exterior field

- Force-free configuration
- Obtained from surface magnetic field

Modulation mechanism

- Twisted magnetic field maintained by currents
- Photons interact with charge carriers
- ⇒ Resonant cyclotron scattering (Timokhin et al. '08)

Twisted magnetospheric field

- Caused by motion of foot points
- Quasi-static sequence of linearized force-free equilibria with:

$$\frac{(J \times B)_{\varphi}}{B_{pol} \cdot \nabla(\alpha r \sin \theta B_{\varphi})} = 0$$

$$\frac{B_{pol} \cdot \nabla(\alpha r \sin \theta B_{\varphi})}{\alpha r \sin \theta} = 0$$

- ullet B_{φ} antisymmetric
- Very different from self-similar solutions

(Vigano et al. '11, Pavan et al. '09)

MCMaMa - Monte-Carlo MAgnetar MAgnetospheres

- Currents (e[±]) induced by the twisted magnetic field
- ullet e $^\pm$ scatter photons resonantly (RCS)
- ⇒ Changes spectrum
- Physical ingredients:
 - Scattering cross sections (Klein-Nishina)
 - Distribution of seed photons (black body)
 - Spatial distribution of charge carriers (determined by force-free magnetic field)
 - Momentum distribution of charge carriers (determined by magnetic field and interaction with photon field)
- MCMaMa: Monte-Carlo Magnetar Magnetosphere scattering code coupling a Monte-Carlo radiation transport for the photons to a particle-in-a-line (pil) code for the charge carriers

(Beloborodov 2012, Timokhin et al. 2008)

Modulating the EM emission

- Maxwellian momentum distribution of mildly relativistic electrons $(\beta=0.3c)$ for the quiescent emission at kT $\sim 0.5 keV$
- Integrated light curve (E=[2keV, 8keV]) for high QPO amplitude
- ⇒ strong modulation at the expected frequencies
 - \bullet Fourier transformation allows to detect the QPOs up to surface amplitudes of $A \leq 1 \mathrm{km}$

Lightcurve in energy band E=[2keV, 8keV]

- A - 10⁴m
- A - 10³m
- A - 10³m
- A - 10²m
-

Conclusions

- ullet Purely crustal shear modes do not exist at $B\gtrsim 10^{14}\,{
 m G}$
- Normal fluid magneto-elastic QPOs can explain observed low frequencies in SGR QPOs for $8\times10^{14}\lesssim B\lesssim4\times10^{15}\,{\rm G}$
- \bullet Superfluid magneto-elastic QPOs can explain low and high frequencies for $2\times10^{14}\lesssim B\lesssim10^{15}\,\rm G$
- Force-free exterior field favours antisymmetric QPOs
- Modulation mechanism: resonant cyclotron scattering (RCS)
- Constructed new code for RCS: MCMaMa

Preliminary result

Superfluid magneto-elastic QPOs with odd equatorial symmetry can modulate the emission significantly for realistic surface amplitudes $< 1\,\mathrm{km}$ \Rightarrow Fully self-consistent model that explains the origin of the QPO and the modulation of the signal