Long Term X-Ray Timing of the Double Pulsar PSR J0737-3039

Maria Noemi Iacolina

Contact: iacolina@oa-cagliari.inaf.it

Collaborators

Alberto Pellizzoni, Elise Egron, Paolo Esposito et al.

This work is supported by the RAS - Regione Autonoma Sardegna

THE double pulsar PSR J0737-3039

PSR B The young "lazy pulsar" (jazzed up by PSR A) P=2.7 s B=2x10¹² G Erot=1.7x10³⁰ erg/s

Lyne et al. 2004 Science

PSR A The old "power plant" P=22.7 ms B=6×10⁹ G E_{rot}=5.9×10³³ erg/s

Burgay et al. 2003 Nature

THE double pulsar PSR J0737-3039: a unique laboratory

Orbital Period: ~2.4 hr

- The most relativistic known DNS
- Unique system allowing for new GR tests
- Mutual Interactions between beams and magnetospheres

The two XMM-Newton Large Programs

Large program	year	XMM-Newton orbits	Instrument	P.I.	Duration
1	2006	2	PN + MOS	A. Pellizzoni	~230 ks ~26 binary orbits
2	2011	3	PN + MOS	A. Pellizzoni	~360 ks ~41 binary orbits

Total	5	~600 ks ~67 binary orbits

Datasets analyzed separately and combined

The data analysis

Extraction process:

- Data were extracted with SAS version 11.0.0
- Extraction parameters:
 PN → 18" rad 5σ cleaning
 MOS → 15" rad 3σ cleaning

Folding:

- SS barycentered with JPL DE405 (SAS-barycen)
- Binary barycentered (according to B&T...)
- Folded in a range centered at the radio period
 Ephemeris: Kramer et al. 2006

The total PSR A pulsed profile

Significance Z_1^2 test peaks precisely at the radio spin period

Little modulation in high energy band

 $V_{S,radio} = 44.054069392744(2)$ Hz $V_{S,XMM} = 44.0540693928(2)$ Hz

Geodetic precession

 Relativistic binary systems undergo spin axis precession around the binary angular momentum

• It results in a change in the pulsed profile shape

Effects on the radio pulsed profiles:

- PSR A: no evidence for variation in the integrated profile
- PSR B: radio emission not detected since November 2008

The PSR A pulsed profile

2006 – Chandra Chatterjee et al. 2007 2006 - XMM Newton

Pellizzoni et al. 2008

~400 ph ~90 ks ~5000 ph ~230 ks

2011 - XMM Newton

Iacolina et al. 2013 in prep.

> ~8000 ph ~360 ks

High energy emission

Particle wind from PSR A reaches the PSR B magnetosphere. The balancing point between pressures is inside B's magnetosphere

High energy emission from:

- Bow shock \rightarrow expected X/y-rays from synchrotron (+inverse compton)
- Pulsed thermal emission from the PSR B surface

Orbital modulation

Marginal detection of orbital modulation

Four orbital phase intervals ~40 min

Null hypothesis prob = 0.01%

Total flux $\chi^2_{red} \sim 3$ Null hypotesis prob = 0.3%

Eight orbital phase intervals ~20 min

2011 detection of PSR B

PSR B detected in 0.35 – 0.55 phase
PSR B sup conjunction phase → 0.39

2006 detection confirmed

2011 detection of PSR B

 Frequency shift 6x10⁻⁶ (also observed in the 2006 data) possibly due to emission located in the upper part of the magnetosphere or in a shock region at some distance from the surface

- The orbital motion of the emission point is perhaps not perfectly corrected by the barycentering software, which however works well in the case of PSR A, as demonstrated by the Z² test and light curve
- This shift allows us to evaluate the altitude of the emission (work in progress...)

Thank you