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I. Gamma-ray emission from pulsars
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Gamma-rays: Outer/slot gaps: messy 
physics, good fits geometrical

• Rotation induces 
charge density in the 
magnetosphere

• EII accelerates particles 
which emit

3outer gap

(D. Page)

• vacuum dipole (Romani +)
• force-free models (Spitkovsky)
• caustics:  dipole + sweep-

back + magnetospheric 
currents + abberation + time 
of flight 

Chen & Rudernman 86

production of gamma-rays
(Chen & Ruderman 1986)
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Emit what? 

• Curvature emission (Chen & Ruderman 1986)

• Hard to solve the full electrodynamic picture: there is no 
kinetic model of pulsar magnetosphere

• EII accelerates particles, produce pairs and currents, pairs 
screen EII, currents distort B-field, changing EII, non-local 
radiative transfer.

• Typically EII ~ 10-2-10-1 B
• Maximal                for primary beam is needed for Crab 
• Clear prediction: above the break the spectrum must be 

exponentially suppressed
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�ph =
�γ3c

RC

γ ≥ 107
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Crab at VHE

• MAGIC sees Crab at 25 GeV 
• Not enough by factor ~ few
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• VERITAS sees Crab at > 150 GeV!
- Cut-off is non-exponential(!): 

Power-law
- IP is brighter than MP 

MAGIC: 
Crab at 500GeV 
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Curvature emission near light 
cylinder is excluded

• Astrophysical E-fields < B-field
• Equate acceleration by                       to curvature losses in  

• Detection of Crab above 150 GeV (with non-exponential 
cut-off) exclude curvature emission as the main emission 
mechanism (Lyutikov et al. 2011)
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For Crab, assuming E=B

≈ 150 GeV

E� = η (r/RLC)B

Maximum possible energy break due to curvature emission
1

Lyutikov + 2012
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Other pulsars: maximal curvature energy 
at light cylinder

• Ratio of the observed break energies Ebr for 46 pulsars 
to the maximum predicted for curvature radiation εbr

• For Crab Ebr/εbr ~ 0.05 seemed OK, but not OK -> Lower limits
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Implications of Crab detection by 
VERITAS:

• Spectral break in Crab is not due to curvature emission of 
the maximal energy of particles

• Alternative possibility: IC scattering
• Break due to the details of particle distribution and 

scattering cross-section (in the KN regime) 
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• Is Crab special (e.g. high level of soft photons)?
• What about other pulsars? 

• Vela
• Geminga
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Fermi spectrum of Geminga
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Abdo et al. 2010

This is obviously a double power-law!

Exponential and
softened exponential fits
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Geminga: fits
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- The highest energy data points actually have the smallest error bars.
- Too broad energy bins?
- Geminga is not intrinsically bright - “garden variety”

Lyutikov 2012
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Geminga: broad band fits

• The errors are not random
• Most  of the chi2 is  accumulated  near the break energy due to the 

ARBITRARY parametrization of the spectral roll-off
• Similar results for phase-resolved spectra
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errors χ2 for double pwlaw
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Vela
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- Double power-law fits are as 
good as exp.

- Various parametrizations of roll-
offs reduce chi^2

Of the three brightest pulsars, two are inconsistent with 
exp cut-off, third is consistent with double power law
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More hints: spectra

• Most young pulsars and some MSPs have hard excess with respect to models
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GemingaCrab Vela

Paul Ray
Maxim Lyutikov and Alice Harding shake 
on a bet over whether the gamma-ray 
spectrum of the Vela Pulsar is power-law 
rather than exponentially cutoff above 
10 GeV. — at Aspen Center for Physics.

Fermi fit quality

All sources Pulsars

T. Burnett, priv. comm.
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More hints: Crab spectrum & profiles
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IP-dominant

MP-dominant

Two bumps

UV-X-rays GeV

-MP/IP pattern is repeated 
in the two spectral bumps
-Consistent with IC model

Detection of Geminga or Vela by VERITAS/HESS would be a killer 
for the curvature model
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IC model 
• `Off-the shelf’’ SSC models not 

applicable
• Random B-field of a given value

• Isotropic particle distribution

• single value for bulk motion

• Regular B-field, changing sharply

• Strong radiative damping: non-
isotropic distribution

• Continuous vII
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Lyutikov 2013
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• Do not model acceleration -  infer 
distribution from observations

• 1D model: Two counter-streaming 
components:

• optical-X-ray: boosted cyclotron

• gamma rays: IC scattering of the inward 
cyclotron photons by the outward going particles

• Deep in KN regime: IC bump is a direct 
measure of f(pII)
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Data fit: 10 orders in energy
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Data: Kuiper +, 2001, Fermi, VERITAS
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Highly constrained fit, ten orders in energy, 
4 orders in flux with few parameters
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Details of the fit

• 4 parameters (Rem, gamma, vgyration, multiplicity), 4 measurables 
(energies and fluxes of two bumps).

• Kinematics: cyclotron peak at ~ 100 keV, IC peak at ~ GeV: 

• LX, Lgamma:
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Measured distribution function f(pII)

• Deep in KN regime: IC component traces particle distribution

• plus counter-streaming. Typical gamma ~ 103  (very reasonable)
• multiplicity: 106 -107- highish, but still reasonable, consistent with 

average ~106 need for the nebula
•                                     -  came from spectral fit. Why gyration?
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Relating all pulsar non-thermal 
emission, from radio to VHE gamma 

rays, 18 orders in energy
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B-field
n > 1 γ 

γ v> c/n

• gyration is excited at anomalous cyclotron resonance 
(Kazbegi + 91, Lyutikov + 98)

• Relativistic plasma streaming along B-field excites EM waves 
at the anomalous cyclotron resonance

• Particle goes up in Landau levels and emits a photon (of 
negative energy in the center of gyration frame)

• Alignment of radio and gamma (?).
• Radio and gamma are intrinsically related!

β0 ∝ (r −RNS)
3

ω − k�v� = −ωB/γ

B-field

e

plasma

In progress!
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Implications:

• Spectral breaks are not due to curvature emission of the 
maximal energy particles

• Alternative possibility: IC scattering, break due to the 
details of particle distribution and scattering cross-section 
(in the KN regime) 

• typical gamma ~ 103 - very reasonable
• high multiplicity, ~ 106 -107, but Crab nebula needs 106 on 

average.
• Pair production in the outer gaps 
•                                - follows from the theory of radio 

emission: radio and VHE gamma are related! (18 orders)
• Critique: where are soft photons in non-Crab pulsars? - IC 

scattering in KN is highly energy dependent, favors UV

20

β0 ∝ (r −RNS)
3
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II. Crab nebula flares: evidence for 
reconnection 
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• ~ few days increase in 100 MeV-1GeV flux, factor of few-tens
• about once per year
• Nothing at other energies or the pulsar
• Time scales << dynamical time for inner rings (months) -> 

Localized intermittent events -  what events?
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Current models of pulsar wind: 
relativistic shock 
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(D. 

Pulsar 
wind

Reverse 
shock

Contact

ejecta

Particles are accelerated

• How much energy is carried by particles,                             
and how much by B-field?

• Models of pulsar magnetospheres: sigma >>1

• Models of the nebular: sigma <<1
• Small sigma: strong shocks, acceleration by Fermi

• Acceleration is slow,on time-scale >> gyration

σ =
B2

4πγρc2
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We have a problem...
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PWN morphology is well reproduced with 
low magnetized wind

24

Komissaov & Lyubarski,
Del Zanna et al., Bucciantini

Chandra image of Crab

Need low magnetized wind, sigma ~ 0.001 σ =
B2

4πγρc2
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But: spectrum of Crab nebula
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Upper limit to synchrotron frequency

26

- Same as Fermi acceleration on inverse gyroscale 
(requires  very efficient scattering, stochastic 
acceleration: eta << 1)
- Typically eta < 10-2 for stochastic shock acceleration: 
this excludes stochastic acceleration schemes even for 
“normal” PWN emission

Lyutikov ‘10, 
Komissarov & Lyutikov ’11
de Jager ‘98 (for shocks)

Accelerating E-field < B-field 

Ep =
27

16π
η
mhc3

e2
= 236 ηMeV.

eEc = ηeBc =
4e4

9m2c3
B2γ2

Contradiction: low magnetized pulsar wind can reproduce Nebula 
morphology, but not the spectrum 
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Particle acceleration?...

• Highly magnetized, sigma >> 1, shocks are weak, not likely 
to be efficient accelerators.

• All the energy in the B-field: accelerate particles directly 
via reconnection.

27

 Paradigm change (?): some (most?) particles 
are accelerated by magnetic reconnection 

(and not shocks)

Wednesday, May 29, 2013



Reconnection: efficient, non-stationary
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v E

New plasma physics regime: sigma >> 1 plasma.
• What are dynamic and dissipative properties of such 

plasmas? - very different from laboratory and space plasmas.
• Pulsar winds, AGN & GRB jets and magnetospheres of BHs
• Alfven velocity is highly relativistic

• E-field is dynamically important
• charge density is important

γ ≥ 1

Reconnection in sigma >> 1 
plasma: outflow can be relativistic 
(Lyutikov & Uzdensky 2002, others) 
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Physical model: collapse of magnetic X-
point in force-free plasma 

• Current sheet can be 
unstable to tearing

•
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• explosive dynamics on Alfven (light) time
• Starting with smooth conditions

• E ~ B0 (field outside), E>B with resistivity
• Particles drift towards null line
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High sigma model of pulsar 
wind nebulae (Lyutikov 2010)
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- Lyutikov (2010): 100 MeV is still too much.
 - Ideal flow in the  bulk, dissipation on 
boundary
 - “We propose that [...] the excessive magnetic flux is 
destroyed in a reconnection-like process“

Boundary

of the cavity

NS

separatrix !=!*

On the axis: toothpaste tube effect

flow 

J

High sigma model of PWNe
- No shocks! (Acceleration in reconnection)
- Relativistic bulk motion of emitting plasma

X

X

Two possible reconnection sites
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Statistical model: Nebula emission 
originates in spontaneous relativistic 
reconnection outflows
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Clausen-Brown, Lyutikov 2012

GRBs: Prompt emission 
produced by emitters 
moving randomly in the bulk 
frame (Lyutikov 2006).

•Relativistic reconnection: Lyutikov & 
Uzdensky, Lyubarsky, Hoshino 
• E ~ (vin/c)  B ~ B
• outflow gamma >> 1
•Can be non-stationary (tearing instability)

Also can be important for AGNs
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•probability of flare flux                             

•average flare flux is dominated 
by bright rare flares.
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Flare statistics: isotropic flares

Power-law from shot noise!
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Г ~ few increases flux and peak energy, nearly 
mono-energetic spectrum

•

33

• Flare spectrum: nearly 
mono-energetic

• Flares are not seen at 
lower energies

mild boost - huge increase in flux 

Consistent with observations (Clausen-Brown & Lyutikov 2012)
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Relevance to other sources: AGNs, GRBs

• BHs in AGNs and GRBs work similar to 
pulsar: rotating, magnetized central object 
produces relativistic magnetized wind

• What is the particle acceleration 
mechanism in the jets?

34
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What causes flares? - Current-driven 
instabilities in highly magnetized plasma

• Plasma with B-field is a non-linear 
anisotropic system, can slowly reach a 
threshold, then evolve explosively

• Flares are  slowly externally-driven, 
suddenly “self-produced”, not like 
shocks
• c.f., Solar flares

• DC-type acceleration in inductive-
resistive E-field

• Need acceleration on scale of ~ light 
day, about 1 degree in polar angle 
(relativistic motion will help a bit)

35
Komissarov
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Conclusion: paradigm changes (?)

• Inverse Compton emission may be the dominant high 
energy emission  mechanism in the majority of pulsars

• Reconnection is an important, perhaps dominant, 
mechanism of particle acceleration in PWNe and possibly 
in other high energy sources.
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