Theory of Pulsar Wind Nebulae

http://www.arcetri.astro.it

Del Zanna, Volpi, Amato, Olmi, Arons, Komissarov, Camus

N. Bucciantini: The Fast and the Furious Madrid, Spain, 2013

1

Pulsar Wind Nebulae

PWN

PWNe once upon a time -Once they were the Crab Nebula, and systems like it

PWNe now - Anything that traces the interaction of a PSR (NS) with the environment

SNR

Modeling Elements

Dynamics - Wind confinement, Nebular flow structure and geometry, Evolutionary effects

Acceleration - Particle spectrum, Injection properties

Emission - Particles evolution, Magnetic field distribution, Radio

Extras - Short timescale variability Flares

Why an MHD description?

Why an MHD description?

MHD is "simple"

Larmor radii << nebular radius (advective regime) Energy losses are negligible (radio particles dominate) Almost pure pair plasma (no dispersive effects) Interested in long evolutionary timescales

Why an MHD description?

MHD is "simple"

Larmor radii << nebular radius (advective regime) Energy losses are negligible (radio particles dominate) Almost pure pair plasma (no dispersive effects) Interested in long evolutionary timescales

Particles are accelerated with high efficiency

- Theoretical model for PWNe 1-D steady-state (*Rees* & Gunn 1974; Kennel & Coroniti, 1984) and self-similar (*Emmering & Chevalier, 1987*) - free expansion phase.
 Basic assumptions:
 - The wind terminates with a strong MHD shock
 - Particles are accelerated at TS
 - Relativistic MHD flow in the PWN region
 - Synchrotron losses inside the nebula
 - Wind parameters derived by comparison with observations:

$$R_{TS} = 3 \times 10^{17} cm$$
, $L = 5 \times 10^{38} erg/s$, $\gamma = 3 \times 10^{6}$, $\sigma = 3 \times 10^{-3}$

Global properties 1D

Evolution 1D

30

25

20

15

5

Density in Log10-scale

Time (years)

50

5.0×10³ 1.0×10⁴

- "Free expansion"
 - Duration T ~ 10³⁻⁴ yr
 - Constant pulsar energy input Emission at high energies
- Reverberation -
 - T~10⁴ yr
 - Enhanced emission due to reenergization
- Sedov -
 - T ~ 10⁵ yr
- Bow-Shock interaction with the ISM

(van der Swaluw et al. 2001,2005; Bucciantini et al. 2003, 2005)

0

 1.5×10^4 2.0×10^4 2.5×10^4 3.0×10^6

Fine structures

- Crab nebula (Weisskopf et al., 2000; Hester et al., 2002)
- Vela pulsar (Helfand et al., 2001; Pavlov et al., 2003)

Wind models 2D

Force-free (Contopulos et al 1999, Gruzinov 2005, Spitkovsky 2006) RMHD (Bogovalov 2001, Komissarov 2006, Bucciantini et al. 2006)

Energy flux ~ $\sin^2(\theta)$

Dynsmics 2D

- Initial magnetic field with a narrow equatorial neutral sheet
- Dissipation in a striped wind

Fine structures

3D - Final Solution?

Evolution 2D

Evolution 2D

Evolution 2D

- Most pulsars kick velocity is supersonic in ISM
- Forward shock visible in Hα
- PWN visible as a radio and X-rays tail

PSR B1957+20 (Stappers et al. 2003)

Bucciantini et al. 2005

Acceleration: Pair Plasma

Perpendicular relativistic shock - Superluminal

Maxwellian at low energies Evidence for not

Evidence for non-thermal tail only for subluminal shock

N. Bucciantini: **The Fast and the Furious** Madrid, Spain, 2013

Acceleration: Striped -Wind

Reconnection in a striped wind produces hard spectra - N(E)~E⁻¹

N. Bucciantini: The Fast and the Furious Madrid, Spain, 2013

Making what we see 1D

For all PWNe where a broad band spectrum is available we see a broken power-law : a hard part in IR/Radio - $N(E) \sim E^{-1} E^{-1.5}$ a soft part in Optical - $N(E) \sim E^{-2} E^{-2.5}$ a cooled component in X

Making what we see 1D

For all PWNe where a broad band spectrum is available we see a broken power-law : a hard part in IR/Radio - $N(E) \sim E^{-1} E^{-1.5}$ a soft part in Optical - $N(E) \sim E^{-2} E^{-2.5}$ a cooled component in X

Making what we see 2D

Madrid, Spain, 2013

Making what we see 2D

Making what we see 2D

Radio particles 2D

N. Bucciantini: **The Fast and the Furious** Madrid, Spain, 2013

Time variability - wisps

Variability in the knot structure Jet feature moving at 0.6 c

Local instabilities or global modes?

- •Wisp moving outward
- •Year long limit cycle
- •Variability in the knot
- •Bubble in the jet v~ 0.6 c

Slane 05, DeLaney 06

MHD variability - Flow

Instability of the shear layers creates eddies at the rim shock

Eddies are advected outward and a toroidal pressure wave is launched

There is no wave reflection from the boundary

Waves reflected on the axis modulate the TS shape

The equatorial channel is kink unstable

MHD variability - Flow

Wisps speed

Wisps speed

Flares

Flares

Summary and conclusions

MHD model is successful in reproducing the *persistent features*

3D model promising to solve the sigma problem

Unsolved issue in particles acceleration and the origin of radio electrons

MHD variability due to unstable Termination Shock can act as a *source of turbulence from larger scales* into the nebula (as opposed to self generated turbulence at the shock)

Very short dynamics (flares) and turbulence long overlooked

Summary and conclusions

MHD model is successful in reproducing the *persistent features*

3D model promising to solve the sigma problem

Unsolved issue in particles acceleration and the origin of radio electrons

MHD variability due to unstable Termination Shock can act as a *source of turbulence from larger scales* into the nebula (as opposed to self generated turbulence at the shock)

Very short dynamics (flares) and turbulence long overlooked

