Explaining hard X-ray emission from magnetars with a coronal outflow model

<u>Romain Hascoët</u>, Andrei M. Beloborodov, *Columbia University*

> Peter R. den Hartog Stanford University

> > **NuSTAR team**

Magnetar spectra

- Emission of a magnetar made of 2 components: soft & hard
- Pulsations over the whole energy range [0.5-300] keV

Soft component (\lesssim 10 keV)

- A modified black-body?
- \rightarrow broadening by resonant cyclotron scattering of **mildly reslativistic** e[±] pairs?
 - (e.g. Fernandez & Thompson 2007, Rea et al. 2008)
 - --- problematic ---

Hard component (≥ 10 keV)

→ resonant cyclotron scattering of highly relativisitic e[±] pairs injected in a twisted magnetosphere? (Beloborodov 2013)

Short description of the magnetar model

Hard X-rays from resonant scattering of thermal photons by relativistic pairs e^\pm

- Deformation (twist) of the magnetosphere by surface motions
- \rightarrow generates currents (rotB \neq 0) in a magnetic loop (j-bundle)
- Close to the star e^{\pm} pairs are created with $\gamma \simeq 10^3$

Selected Objects

AXP 4U 0142+614

- IR and optical counterpart (Hulleman et al. 2000, 2004)
- bursting activity in 2006 after several years of quiescence (Gavriil et al. 2011)
- evidence for long term variability below 10 keV (Gonzalez et al. 2010)

AXP 1RXS J1708-40

- IR counterpart candidate (e.g. Testa et al. 2008)
- detection of glitches (Israel et al. 2007; Dib et al. 2008)

Composite spectra (sub-keV \rightarrow MeV)

- Phase averaged spectrum of the total emission XMM-Newton, INTEGRAL, CGRO-Comptel
- 3 phase resolved spectra of the pulsed emission RXTE-PCA, INTEGRAL

den Hartog et al., A&A, 489, 263 (2008) den Hartog et al., A&A, 489, 245 (2008)

AXP 1E 1841-045

- Glitches & bursts (Dib et al. 2008)
- Optical counterpart candidate (Testa et al. 2008)
- NuSTAR data (5 → 80 keV)
- ightarrow see Hongjun An's talk for more details on data

Method

Exploration of the whole parameter space

- Fitted spectra (\gtrsim 10 keV):
 - phase averaged spectra of the total emission
 - 3 phase resolved spectra of the pulsed emission
- Assumptions:
 - dipole configuration for the magnetic field
 - the active magnetic loop (j-bundle) is symmetric around magnetic axis

Parameters of the model

- 1. α_{mag} : angle between the rotation axis and the magnetic axis
- 2. β_{obs} : angle between the rotation axis and the observer line of sight
- 3. θ_{i} : latitude extension of the j-bundle footprint
- 4. L : total luminosity (⇔ normalization)
- 5. ϕ_0 : reference point for rotational phase (when fitting phase resolved spectra)
- 6. μ_{mag} : strength of the magnetic dipole (\Leftrightarrow surface magnetic field B_{surf})

only a lower-limit on μ_{mag}

Results — Best fit

Results – χ^2 map

Results — Constraints on physical parameters

	4U 0142+614	1RXS J1708-40
$\alpha_{\rm mag}$ – angle between the rotation axis and the magnetic dipole axis	$0.03 < lpha_{ m mag} < 0.15$	$0.06 < lpha_{ m mag} < 0.12$
β_{obs} – angle between the rotation axis and the observer line of sight	$0.16 < \beta_{obs} < 0.79$	0.2 < β _{obs} < 0.65
θ_j – latitude extension of the j-bundle footprint	θ _j < 0.23	θ _j < 0.15
L – total luminosity	$1.5 < \frac{L}{10^{35} \text{ erg s}^{-1}} < 6.2$	$1.7 < \frac{L}{10^{35} \text{ erg s}^{-1}} < 5.2$
	@ D = 3.6 kpc	@ D = 3.8 kpc
u _{mag} – strength of the magnetic dipole (⇔ surface magnetic field B _{surf})	consistent with the value inferred from spindown	

The constraints are similar for both magnetars. \rightarrow Not surprising since they have similar spectra

χ^2 map for 1E 1841-045 NuSTAR data – preliminary

 \rightarrow The constraints are different compared to 4U 0142+614, 1RXS J1708-40

What about the soft X-ray component? How to produce a modified black-body?

What about the soft X-ray component? Fit of 1E 1841-045 soft component by 2 black bodies – Preliminary

Conclusions

• The coronal outflow model successfully fits phase resolved spectra of the hard component of the three magnetars 4U 0142+614, 1RXS J1708-40, 1E 1841-045

 \rightarrow constraints on the geometry of the objects

- The pulse fraction at ~ 100 keV is less than 50% (recent GBM and INTEGRAL observations – W. Hermsen, NS 2013, Amsterdam)
 → the j-bundle has to be rather broad consistent with the fact that axisymetry hypothesis gives reasonable fits
- Models for the soft component have to be reconsidered in this coronal outflow framework
- 1. hot spot at the j-bundle footprint?
- 2. resonant scattering by the mildly relativisitic flow at the equator? ${\cal M} \propto au_{
 m res} \propto 10^2$