

Search for correlation between giant radio pulses and hard X-ray pulses from the Crab pulsar

Ryo Mikami¹, Toshio Terasawa¹, Kazuhiro Takefuji², Mamoru Sekido², Hiroshi Takeuchi³, Yasuyuki Tanaka⁴, <u>Shota Kisaka¹</u>, Katsuaki Asano¹, Nobuyuki Kawai⁵ & Kumiko Nagata⁵

1:Institute for Cosmic Ray Research, University of Tokyo
2:National Institute of Information and Communications Technology
3:Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
4:Hiroshima Astrophysical Science Center, Hiroshima University
5:Department of Physics, Tokyo Institute for Technology

Abstract

We made simultaneous observations of radio (Kashima 34m and Usuda 64m dishes in Japan, 1.4GHz) and hard X-ray (Suzaku satellite, 15-75keV) pulses from the Crab pulsar for total 12.7 hours on three occasions in 2010-2011.

Based on these datasets we have searched a correlation between giant radio pulses (GRPs) and X-ray pulses, and found that peak X-ray flux concurrent with main phase GRPs showed a statistically marginal increase by $21.5 \pm$ 8.0 percent (2.7 sigma significance) over the average X-ray flux when radio pulses were normal.

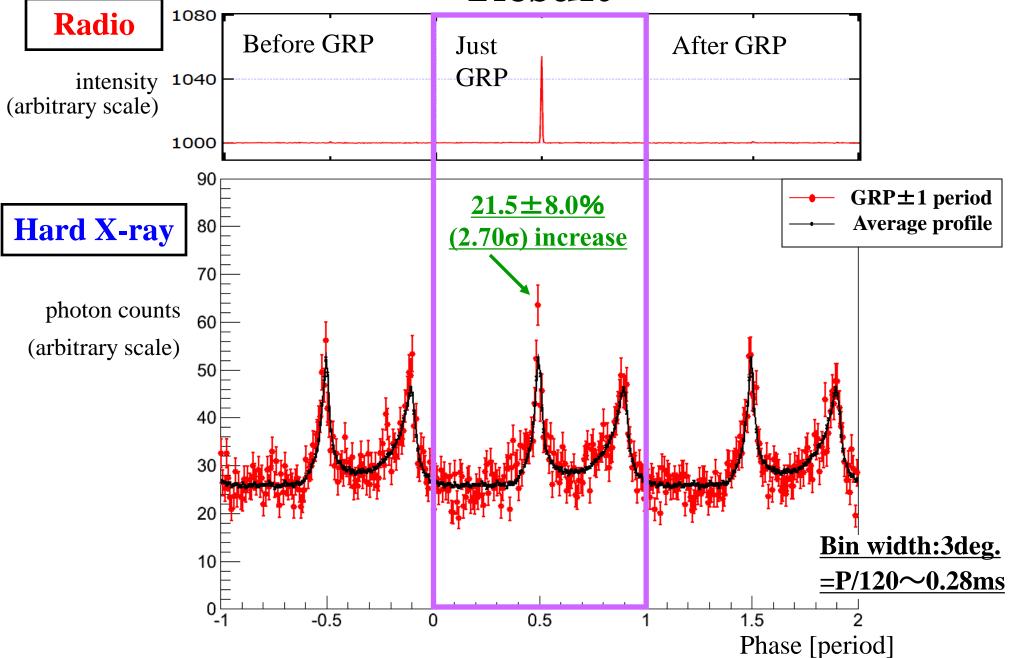
We will discuss physical implications of this correlation, if it is proved to be real.

Previous correlation studies

$ \begin{bmatrix} J \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$				
Energy band	Flux variation concurrent with GRPs	Satellite/Telescope	Reference	
Optical (600-750nm)	Enhanced by 3%	William Herschel Telescope	Shearer+ (2003)	
Soft X-ray (1.5-4.5keV)	<200%	Chandra/HRC-S	Bilous+ (2012)	
Hard X-ray (15-75keV)	This work.	Suzaku/HXD	This work.	
Soft γ-ray (50-220keV)	<250%	CGRO/OSSE	Lundgren+ (1995)	
γ-ray (0.1-5GeV)	<400%	Fermi/LAT	Bilous+ (2011)	
VHEγ-ray (>150GeV)	<500-1000%	VERITAS	Aliu+ (2012)	

Our observations of the Crab pulsar

ORadio observations (1.4GHz):


The **Kashima 34m parabola** and the **Usuda 64m parabola Omega Weighted Weighteed Weighted Weighted Weighteed Weighteed Weighteed Weighteed Weighte**

The Suzaku HXD

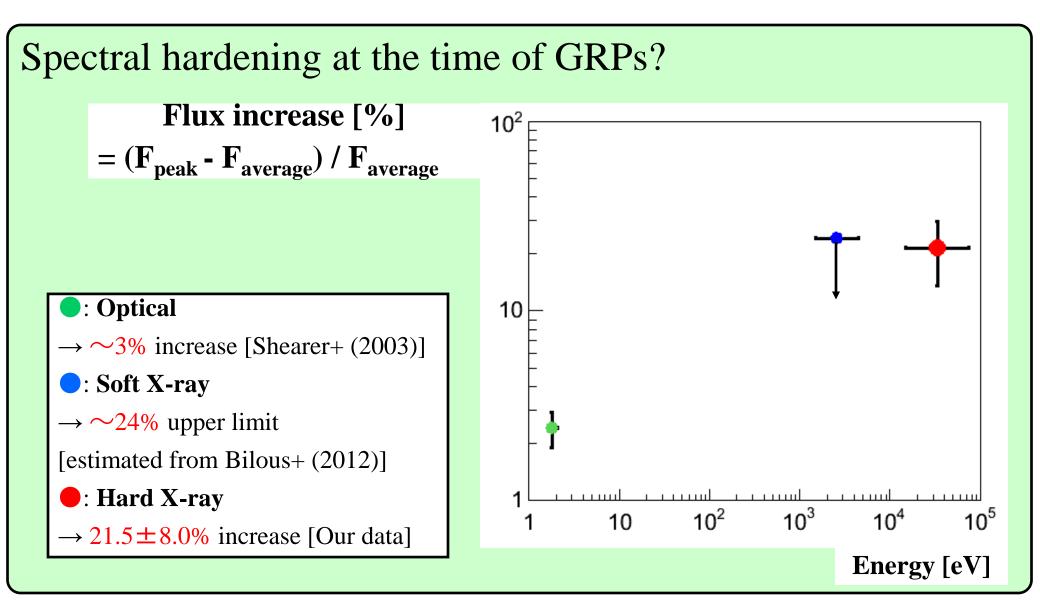
Date	6 Apr, 2010	22 Mar, 2011	1-2 Sep, 2011
Observing time [min.]	313	178	271
# of normal pulses	558118	317311	483044
# of GRPs (S/N≧5) (The ratio to all pulses)	4090 (0.73%)	2568 (0.81%)	6487 (1.34%)

We compared flux densities of hard X-ray pulses coincident with **GRPs occurring at the phase of the main pulse** with those not coincident with GRPs.

Result

Implications for the GRP emission (I)

Possible correlation is found between hard X-rays and GRPs.


This may indicate an increase of plasma density in the pulsar magnetosphere at GRP time.

The hard X-ray flux increases only at the peak of those pulses.

Hard X-ray emission region is "partially" affected by the mechanism that causes GRPs.

Implications for the GRP emission (II)

Summary

•Making simultaneous radio and hard X-ray observations, we found possible increase $(21.5 \pm 8.0\%, 2.70\sigma)$ of hard X-ray flux coincident with GRPs.

•We are planning to make further observations in order to improve statistics.