Particle acceleration region of old pulsars

Shota Kisaka (ICRR, Univ. of Tokyo)

with Shuta Tanaka (ICRR, Univ. of Tokyo)

Old pulsars

"Old" pulsars : $\tau_c = P/2Pdot > 1Myrs$, non-recycled

Non-thermal X-ray emission is detected.

- Polar cap
- → Smaller than the cyclotron turnover frequency near the star.

(Rudak & Dyks 1999)

Wang & Hirotani (2011)

Old pulsars

"Old" pulsars : $\tau_c = P/2Pdot > 1Myrs$, non-recycled

period [s]

Synchrotron Emission

Frequency
$$u_{
m syn}=rac{3}{2}\gamma^2
u_{
m g}$$
Luminosity $L_{
m syn}=rac{2e^2}{3c}\gamma^2
u_{
m g}^2N_{
m s}$
 $u_{
m g}=rac{eB\sinlpha}{m_{
m e}c}$

If emission region $r = R_{lc}$, large values of $\gamma_{s,obs}$ and κ_{obs} are required.

Model

Assumption

Incoming particles emit y-ray and pair creation occurs. Created pairs emit X-ray via synchrotron radiation.

Observed values : L_{PL} , L_{BB} , T, v_{obs}

Model parameters: r, n

Generalized gap model

$$E_{||} \equiv \eta E_{\perp,{
m GJ}}$$
 $0<|\eta|<1$ $E_{\perp,{
m GJ}}=rac{r\Omega}{c}B\propto r^{-2}$ cf. $E_{
m vac}\simrac{R_{
m NS}^2}{rR_{
m lc}}B\propto r^{-4}$

cf.
$$E_{
m vac} \sim rac{R_{
m NS}^2}{rR_{
m lc}} B \propto r^{-4}$$

Gap:
$$0 \le \rho \le \rho_{GJ}$$
 (if $\rho_{GJ} > 0$)
 $\rho_{GJ} \le \rho \le 0$ (if $\rho_{GJ} < 0$)

Constraints (1/2)

Emission regions locate within magnetospheres.

$$R_{\rm NS} < r < R_{\rm lc}$$

• Energy flux cannot exceed the spin-down luminosity.

$$N_{\rm s} \gamma_{\rm s,obs} m_{\rm e} c^2 (1+\sigma) < L_{\rm sd}$$

•Observed frequency should exceed the cyclotron turnover frequency. $\nu_{\rm obs} > \frac{eB}{m_{\rm e}c\alpha}$

Energy of pairs should exceed the observed ones.

$$\gamma_{\rm s} > \gamma_{\rm s,obs}$$

Constraints (2/2)

- The products of two photon energies should exceed the γ-γ pair creation threshold. $h\nu_{\rm X}\times h\nu_{\gamma}>(m_{\rm e}c^2)^2$
- Created number of pairs should exceed the observed ones. $n_{\rm p} \times N_{\gamma} \tau_{{
 m X}\gamma} > n_{
 m s}$

$$L_{BB} \rightarrow n_p$$
: Number of primary particles $\gamma_p \rightarrow N_{\gamma}$: Number of γ -ray photons from single e⁻(e⁺) L_{BB} , $T \rightarrow \tau_{X\gamma}$: γ - γ optica' depth

X-ray photons should not collide with the star.

 $>R_{
m NS}$

Results

Acceleration (emission) region : $r \sim 10^{-2}R_{lc}$ Strength of $E_{||}$: $\eta \sim 10^{-2}-1$

Result (PSR J0108-1431)

Steady gap?

The created number density of particles are smaller than that of Goldreich-Julian ones.

Summary

- We try to explain the non-thermal X-ray emission from old pulsars based on the synchrotron radiation.
- We find that if there is strong electric field ($\eta \sim 0.1$) at the region $\sim 10^{-2} R_{lc}$, the non-thermal emission from secondary particles reproduces the observed X-ray luminosity.
- Because the pair creation rate is not enough to maintain the sustainability of the acceleration gap, our results implicate the time-dependent behavior.