# Spectral properties and HE behaviour of few bright and young Fermi PSRs 

## T.TAVERNIER, \& A.Djannati-Atai

Université Paris 7 - APC

May 22, 2013


1 Introdution

2 analysis of few bright PRS

- Vela PSR
- Geminga

■ B1706-44 (PSRJ1709-4429)

- TAZ (PSRJ1809-2332)

■ PSRJ2229+6114
■ PSRJ1907+0602
■ summary

3 A closer look on the sub-exponential cutoff shape

4 Conclusions

## Section 1

Introdution

## Pulsed emission beyond TeV already observed for the Crab PSR

## Pulsed emission has been observed by the MAGIC and VERITAS collaborations．

## 2 Hypotheses：



The VERITAS collaboration，Detection of Pulsed Gamma Rays Above 100 GeV from the Crab Pulsar（2011）
A．Aharonian，S．V．Bogovalov \＆D．Khangulian Abrupt acceleration of a＇cold＇ultrarelativistic wind from the Crab pulsar（2012）

## List of brightest Fermi pulsars

| PSR | Assoc | Type $^{\dagger}$ | Energy Flux <br> $\left(10^{-11} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$ | $\dot{E}_{\text {rot }} / d^{2}$ <br> $\left(10^{36} \mathrm{erg} \mathrm{kpc}^{-2} \mathrm{~s}^{-1}\right)$ | $\Gamma$ | $E_{\text {cutoff }}$ <br> $(\mathrm{GeV})$ |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| J0835-4510 | Vela | r | $879.4 \pm 5.4$ | 85 | $1.57 \pm 0.01$ | $3.2 \pm 0.1$ |
| J0633+1746 | Geminga | g | $338.1 \pm 3.5$ | 1.3 | $1.08 \pm 0.02$ | $1.9 \pm 0.05$ |
| J0534+2200 | Crab | r | $130.6 \pm 3.4$ | 120 | $1.97 \pm 0.02$ | $5.8 \pm 0.5$ |
| J1709-4429 | B1706-44 | r | $124 \pm 2.6$ | 1 | $1.70 \pm 0.04$ | $4.9 \pm 0.4$ |
| J1809-2332 | Taz | g | $41.3 \pm 1.6$ | 0.13 | $1.52 \pm 0.07$ | $2.9 \pm 0.3$ |
| J1826-1256 |  | g | $33.4 \pm 1.8$ | $*$ | $1.49 \pm 0.11$ | $2.4 \pm 0.3$ |
| J1907+06 | Milagro ${ }^{a}$ | g | $27.5 \pm 1.6$ | 0.31 | $1.84 \pm 0.10$ | $4.6 \pm 1.0$ |
| J1057-5226 |  | r | $27.2 \pm 0.98$ | 0.013 | $1.06 \pm 0.10$ | $1.3 \pm 0.1$ |
| J1732-31 |  | g | $24.2 \pm 1.4$ | $*$ | $1.27 \pm 0.14$ | $2.2 \pm 0.3$ |
| J1418-6058 | Kooka | g | $23.5 \pm 3.8$ | $*$ | $1.32 \pm 0.24$ | $1.9 \pm 0.4$ |
| J1741-2054 |  | $\mathrm{r}(\mathrm{g})$ | $20.3 \pm 2.0$ | 0.15 | $12.8 \pm 0.8$ | $1.39 \pm 0.17$ |
| J1028-5819 |  | r | $17.7 \pm 1.4$ | 0.11 | $1.25 \pm 0.20$ | $1.9 \pm 0.5$ |
| J1048-5832 |  | r | $17.2 \pm 1.3$ | 0.23 | $1.31 \pm 0.18$ | $2.0 \pm 0.4$ |
| J1813-1246 |  | g | $16.9 \pm 1.3$ | 0 | $1.83 \pm 0.14$ | $2.9 \pm 0.8$ |
| J1420-6048 | Kooka | r | $15.8 \pm 3.5$ | 0.18 | $1.73 \pm 0.24$ | $2.7 \pm 1.0$ |
| J1747-2958 |  | r | $13.1 \pm 1.7$ | 0.4 | $1.11 \pm 0.34$ | $1.0 \pm 0.2$ |
| J1459-60 |  | g | $10.56 \pm 1.2$ | $*$ | $1.83 \pm 0.24$ | $2.7 \pm 1.1$ |
| J1833-1034 | G21.5-0.9 | r | $10.1 \pm 1.4$ | 1.8 | $2.24 \pm 0.18$ | $7.7 \pm 4.8$ |

Abdo, A. A. et al. 2010, ApJS, 187, Issue 2, 460-494

## Methodology

## Methodology

- Fermi data analysis of bright pulsars (6 are discussed here)
- Phase averaged + Phase-resolved spectra
- Test of different spectral shapes (PLEC, sub-PLEC, broken power-law)
■ Choose the most likely shapes
- Use CTA (config E) sensitivity curves to evaluate expected signals

Ephemerides : Lucas Guillemot (Max Planck Bonn), Ryan Shanon ( ATNF) \& David Smith (CENBG Bordeaux).

## Vela PSR

## Vela



## Phase averaged spectrum of Vela



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$$
\begin{aligned}
& \phi_{0}=(2.41+/-0.11) \cdot 10^{-9} \\
& \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot s^{-1} \\
& a=1.53+/-0.04 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=2934+/-26 \mathrm{MeV} \\
& b=1
\end{aligned}
$$

## best sub-PLEC fit

$\phi_{0}=(7.2+/-1.1) \cdot 10^{-9}$
MeV.cm ${ }^{-2} . \mathrm{s}^{-1}$
$a=1.16+/-0.04$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=521+/-124 \mathrm{MeV}$
$b=0.54+/-0.02$

## Phase averaged spectrum of Vela: SBPL fit



## best SBPL fit

$$
\begin{aligned}
& \phi_{0}=(7.68+/-0.03) \cdot 10^{-8} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& \gamma_{1}=-1.398+/-0.09 \\
& E_{0}=100 \\
& \gamma_{2}=-5.00+/-0.0001 \\
& E_{b}=5514+/-62 \\
& \beta=3.52+/-0.05
\end{aligned}
$$

$$
\left.F(E)=\phi_{0}{\frac{E}{E_{0}}}^{\gamma_{1}}\left(1+E^{E_{b}}\right)^{\frac{\gamma_{1}-\gamma_{2}}{\beta}}\right)^{-\beta}
$$

## Phase Resolved spectrum of Vela : P1


best sub-PLEC fit
$\phi_{0}=(1.77+/-0.08) \cdot 10^{-11} \mathrm{MeV} . \mathrm{cm}^{-2} . \mathrm{s}^{-1}$
$a=01.20+/-0.01$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=206+/-13 \mathrm{MeV}$
$b=0.47+/-0.01$
Rejection Coefficient for the PLEC shape :
$>10 \sigma$

$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## Phase Resolved spectrum of Vela : P2



## best sub-PLEC fit

$\phi_{0}=(1.69+/-0.07) \cdot 10^{-11} \mathrm{MeV} . \mathrm{cm}^{-2} . \mathrm{s}^{-1}$
$a=1.07+/-0.01$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=275+/-18 \mathrm{MeV}$
$b=0.456+/-0.005$
Rejection Coefficient for the PLEC shape :
$>10 \sigma$

$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## Geminga

## Geminga



## Phase averaged spectrum of Geminga



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$$
\phi_{0}=(1.36+/-0.01) \cdot 10^{-9} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}
$$

$$
a=1.204+/-0.007
$$

$$
E_{0}=1000 \mathrm{MeV}
$$

$$
E_{c}=2117+/-26 \mathrm{MeV}
$$

$$
b=1
$$

## best sub-PLEC fit

$$
\begin{aligned}
& \phi_{0}=(2.285+/-0.003) \cdot 10^{-9} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& a=1.002+/-0.001 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=1035+/-1 \mathrm{MeV} \\
& b=0.741+/-0.001
\end{aligned}
$$

Rejection Coefficient for the PLEC shape : $\sim 5 \sigma$

## Phase averaged spectrum of Geminga : SBPL fit



$$
\left.F(E)=\phi_{0}{\frac{E}{E_{0}}}^{\gamma_{1}}\left(1+E^{E_{b}}\right)^{\frac{\gamma_{1}-\gamma_{2}}{\beta}}\right)^{-\beta}
$$

best SBPL fit

$$
\begin{aligned}
& \phi_{0}=(1.23+/-0.05) \cdot 10^{-9} \\
& \gamma_{1}=-1.23+/-0.02 \\
& E_{0}=1000 \\
& \gamma_{2}=-5.05+/-0.1 \\
& E_{b}=3969+/-94 \\
& \beta=2.63+/-0.08
\end{aligned}
$$

Rejection Coefficient for the SBPL shape :
$\sim 4.2 \sigma$

## Phase resolved spectra : P2



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$\phi_{0}=(0.4290+/-0.005) \cdot 10^{-9} \mathrm{MeV} . \mathrm{cm}^{-2} . \mathrm{s}^{-1}$
$a=1.01+/-0.01$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=2420+/-46 \mathrm{MeV}$
$b=1$

## best sub-PLEC fit

$$
\begin{aligned}
& \phi_{0}=(0.8+/-0.1) \cdot 10^{-9} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& a=0.73+/-0.05 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=925+/-205 \mathrm{MeV} \\
& b=0.69+/-0.04
\end{aligned}
$$

Rejection Coefficient for the PLEC shape : $\sim 5 \sigma$

## B1706-44 (PSRJ1709-4429)

B1706-44 (PSRJ1709-4429)


## Phase averaged spectrum of B1706-44



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$\phi_{0}=(3.86+/-0.2) \cdot 10^{-9} \mathrm{MeV} . \mathrm{cm}^{-2} . \mathrm{s}^{-1}$
$a=-1.71+/-0.01$
$E_{0}=218.5+/-6 \mathrm{MeV}$
$E_{c}=4499+/-156 \mathrm{MeV}$
$b=1$

## best sub-PLEC fit

$$
\begin{aligned}
& \phi_{0}=(1.0+/-0.2) \cdot 10^{-9} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& a=1.18+/-0.02 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=452+/-11 \mathrm{MeV} \\
& b=0.50+/-0.004
\end{aligned}
$$

Rejection Coefficient for the PLEC shape : $\sim 3 \sigma$

## Phase Resolved spectrum of B1706-44 : P2



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$\phi_{0}=(1.37+/-0.02) \cdot 10^{-10} \mathrm{MeV} . \mathrm{cm}^{-2} \cdot \mathrm{~s}^{-1}$
$a=1.59+/-0.02$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=3921+/-183 \mathrm{MeV}$
$b=1$

## best sub-PLEC fit

$$
\begin{aligned}
& \phi_{0}=(4.9+/-3) \cdot 10^{-10} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& a=1.1+/-0.2 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=456+/-27 \mathrm{MeV} \\
& b=0.52+/-0.09
\end{aligned}
$$

Rejection Coefficient for the PLEC shape : $\sim 3 \sigma$

## Phase Resolved spectrum of B1706-44 : shoulder



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$$
\phi_{0}=(1.06+/-0.02) \cdot 10^{-10} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1}
$$

$$
a=1.65+/-0.02
$$

$$
E_{0}=1000 \mathrm{MeV}
$$

$$
E_{c}=4831+/-265 \mathrm{MeV}
$$

$$
b=1
$$

## best sub-PLEC fit

$$
\begin{aligned}
& \phi_{0}=(3.9+/-2.6) \cdot 10^{-10} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& a=1.1+/-0.1 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=452+/-477 \mathrm{MeV} \\
& b=0.49+/-0.08
\end{aligned}
$$

Rejection Coefficient for the PLEC shape : $\sim 3 \sigma$

## TAZ (PSRJ1809-2332)

## TAZ (PSRJ1809-2332)



## Phase averaged spectrum of TAZ



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$\phi_{0}=(1.2+/-0.01) .10^{-10} \mathrm{MeV} . \mathrm{cm}^{-2} . \mathrm{s}^{-1}$
$a=1.52+/-0.03$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=2874+/-196 \mathrm{MeV}$
$b=1$

## best sub-PLEC fit

$\phi_{0}=(12.73+/-0.05) .10^{-10} \mathrm{MeV} . \mathrm{cm}^{-2} . \mathrm{s}^{-1}$
$a=0.816+/-0.004$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=107+/-0.3 \mathrm{MeV}$
$b=0.43191+/-0.0004$
Rejection Coefficient for the PLEC shape : $\sim 3 \sigma$

## Phase Resolved spectrum of TAZ : P1



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$\phi_{0}=(4.4+/-0.2) \cdot 10^{-11} \mathrm{MeV} . \mathrm{cm}^{-2} . \mathrm{s}^{-1}$
$a=1.44+/-0.04$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=2926+/-282 \mathrm{MeV}$
$b=1$

## best sub-PLEC fit

$\phi_{0}=(4.6+/-0.1) \cdot 10^{-10} \mathrm{MeV} . \mathrm{cm}^{-2} . \mathrm{s}^{-1}$
$a=0.7+/-0.07$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=102+/-27 \mathrm{MeV}$
$b=0.42+/-0.01$
Rejection Coefficient for the PLEC shape :
$\sim 2.3 \sigma$

## Phase Resolved spectrum of TAZ : P2



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$$
\begin{aligned}
& \phi_{0}=(3.0+/-0.1) \cdot 10^{-11} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& a=1.45+/-0.05 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=3696+/-408 \mathrm{MeV} \\
& b=1
\end{aligned}
$$

## best sub-PLEC fit

$$
\begin{aligned}
& \phi_{0}=(2.8+/-0.7) \cdot 10^{-10} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& a=0.76+/-0.08 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=108+/-35 \mathrm{MeV} \\
& b=0.41+/-0.02
\end{aligned}
$$

Rejection Coefficient for the PLEC shape :
$\sim 1.7 \sigma$

## PSRJ2229+6114

PSRJ2229+6114


## Phase averaged spectrum of PSRJ2229+6114



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$$
\begin{aligned}
& \phi_{0}=(6.2+/-0.3) \cdot 10^{-11} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& a=1.7+/-0.04 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=3218+/-353 \mathrm{MeV} \\
& b=1
\end{aligned}
$$

## best sub-PLEC fit

$$
\begin{aligned}
& \phi_{0}=(58.6+/-0.5) .10^{-11} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} . \mathrm{s}^{-1} \\
& a=1.112+/-0.007 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=102+/-0.7 \mathrm{MeV} \\
& b=0.408+/-0.001
\end{aligned}
$$

Rejection Coefficient for the PLEC shape : $\sim 3 \sigma$

## Phase resolved spectrum of J2229+6114



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$\phi_{0}=(2.5+/-0.1) \cdot 10^{-11} \mathrm{MeV} . \mathrm{cm}^{-2} . \mathrm{s}^{-1}$
$a=1.6+/-0.05$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=3435+/-440 \mathrm{MeV}$
$b=1$

## best sub-PLEC fit

$\phi_{0}=(24+/-5) \cdot 10^{-11} \mathrm{MeV} . \mathrm{cm}^{-2} . \mathrm{s}^{-1}$
$a=0.95+/-0.03$
$E_{0}=1000 \mathrm{MeV}$
$E_{c}=100+/-36 \mathrm{MeV}$
$b=0.40+/-0.02$
Rejection Coefficient for the PLEC shape : $\sim 2 \sigma$

## PSRJ1907+0602



## Phase averaged spectrum of PSRJ1907+0602



$$
F(E)=\phi_{0}\left(\frac{E}{E_{0}}\right)^{a} \exp \left(-\left(\frac{E}{E_{c}}\right)^{b}\right)
$$

## best PLEC fit

$$
\begin{aligned}
& \phi_{0}=(5.8+/-0.2) \cdot 10^{-11} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& a=1.86+/-0.06 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=4347+/-540 \mathrm{MeV} \\
& b=1
\end{aligned}
$$

## best sub-PLEC fit

$$
\begin{aligned}
& \phi_{0}=(58+/-6) \cdot 10^{-11} \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{~s}^{-1} \\
& a=1.06+/-0.08 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=105+/-11 \mathrm{MeV} \\
& b=0.41+/-0.01
\end{aligned}
$$

Hypotheses are compatible

## Phase resolved spectrum of PSRJ1907+0602



## best PLEC fit

$$
\begin{aligned}
& \phi_{0}=(2.2+/-0.2) \cdot 10^{-11} \\
& \mathrm{MeV} \cdot \mathrm{~cm}^{-2} \cdot s^{-1} \\
& a=1.86+/-0.3 \\
& E_{0}=1000 \mathrm{MeV} \\
& E_{c}=3357+/-735 \mathrm{MeV} \\
& b=1
\end{aligned}
$$

## best SBPL fit

$$
\begin{aligned}
& \phi_{0}=(1.23+/-0.05) .10^{-10} \\
& \gamma_{1}=-1.8+/-0.3 \\
& E_{0}=1000 \\
& \gamma_{2}=-3.6+/-0.3 \\
& E_{b}=2499+/-15 \\
& \beta=0.6+/-0.8
\end{aligned}
$$

Hypotheses are compatible

Best Sub-PLEC fits

| PSR |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left({\left.\mathrm{MeV} \cdot \mathrm{cm}^{-2} \cdot s^{-1}\right)}\right.$ |  | $E_{0}$ <br> $(\mathrm{MeV})$ | $E_{C}$ <br> $(\mathrm{MeV})$ | $b$ | Flux $>30 \mathrm{GeV}$ <br> $\left(\mathrm{cm}^{-2} s^{-1}\right)$ | $\%$ of CrbPSR <br> $>30 \mathrm{GeV}$ | Flux $>100 \mathrm{GeV}$ <br> $\left(\mathrm{cm}^{-2} s^{-1}\right)$ |  |
| Vela | $7.2 .10^{-9}$ | -1.16 | 1000 | 521 | 0.54 | $1.02 \mathrm{e}-10$ | 73 | $1.60 \mathrm{e}-15$ |
| Geminga | $2.3 .10^{-9}$ | -1.0 | 1000 | 1035 | 0.74 | $5.11 \mathrm{e}-17$ | $3.6 \mathrm{e}-5$ | $1.12 \mathrm{e}-23$ |
| B1706-44 | $1.0 .10^{-9}$ | -1.2 | 1000 | 452 | 0.5 | $2.30 \mathrm{e}-11$ | 16 | $1.04 \mathrm{e}-14$ |
| TAZ | $1.2 .10^{-9}$ | -0.8 | 1000 | 107 | 0.43 | $4.48 \mathrm{e}-14$ | 0.03 | $1.12 \mathrm{e}-16$ |
| PSRJ2229+6114 | $5.8 .10^{-10}$ | -1.2 | 1000 | 102 | 0.40 | $1.93 \mathrm{e}-13$ | 0.1 | $1.47 \mathrm{e}-15$ |
| PSRJ1907+0602 | $5.8 .10^{-10}$ | -1.1 | 1000 | 102 | 0.41 | $1.25 \mathrm{e}-13$ | 0.09 | $6.95 \mathrm{e}-16$ |

Best SBPL fits

|  | $\left(\mathrm{MeV} . \mathrm{cm}^{-2} \cdot \mathrm{~s}^{-1}\right)$ | $\gamma_{1}$ | $\begin{gathered} E_{0} \\ (\mathrm{MeV}) \end{gathered}$ | $\begin{gathered} \gamma_{2} \\ (\mathrm{MeV}) \end{gathered}$ | $E_{b}$ | $\begin{gathered} \beta \\ \left(\mathrm{cm}^{-2} s^{-1}\right) \end{gathered}$ | $\begin{gathered} \text { Flux }>30 \mathrm{GeV} \\ >30 \mathrm{GeV} \end{gathered}$ | $\begin{aligned} & \% \text { of CrbPSR } \\ & \left(\mathrm{cm}^{-2} s^{-1}\right) \end{aligned}$ | Flux $>100 \mathrm{GeV}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Vela | 7.7.10-8 | -1.4 | 100 | -5.0 | 5514 | 3.52 | $2.81 \mathrm{e}-10$ | 200 | $3.11 \mathrm{e}-12$ |
| Geminga | 1.23.10 ${ }^{-9}$ | -1.23 | 1000 | -5.0 | 3969 | 2.63 | $5.56 \mathrm{e}-11$ | 40 | $3.20 \mathrm{e}-13$ |
| B1706-44 | 6.9.10-9 | -1.73 | 104.8 | -3.65 | 3550 | 1 | 7.86e-11 | 56 | $2.14 \mathrm{e}-12$ |

## Prospects of detection with CTA (Config E)

| Vela |
| :--- |
| SBPL $:<1 h$ |
| Sub-PLEC $: \sim 3 h$ |
| geminga |
| SBPL $: \sim 2 h$ |
| Sub-PLEC $:$ No detection |
| B1706-44 |
| SBPL $: \sim 2 h$ |
| Sub-PLEC $: \sim 20 h$ |
|  |
| PSRJ1907 +0602 |
| SBPL $: \sim 30 h$ |
| Sub-PLEC $:$ no detection |

## Section 3

## A closer look on the sub-exponential cutoff shape

## A closer look on the sub-exponential cutoff shape

## Problem?

Presently favored models, were the HE emission is from curvature radiation of particles inside the magnetosphere (slot \& outer Gap ) predict a spectral shape with an exponential Cut-off.
*We observe harder spectrum for the young and bright PSR presented in this work* $b<1$ significantly!


## A closer look on the sub-exponential cutoff shape

usually evoked hypothesis (for Phase averaged spectra)
The sub-exponential shape is the result of a sum of multiple power laws each with a simple exponential cut-off but different $E_{\text {cut }}$.

## But...

- The spectrum derived for a very short phase interval shows still a sub-exponential shape, sometimes even harder than the phase averaged spectrum.
■ Summing multiple power laws with simple exponential cut-off and different $E_{\text {cut }}$ leads indeed to a sub-exponential cut-off, but softer than the observed pulsar spectra ( $b>0.7$ ).



1st sum :

$$
\sum_{E_{c}=0}^{10000}\left(\frac{E}{E_{0}}\right)^{1.7} \exp \left(-\left(\frac{E}{E_{c}}\right)\right)
$$

2nd sum :

$$
\sum_{E_{c}=0}^{10000}\left(\frac{E}{E_{0}}\right)^{\text {rand }[-1,-2]} \exp \left(-\left(\frac{E}{E_{c}}\right)\right)
$$

## A closer look on the sub-exponential cutoff shape

## Other possible explanations

- Peculiar particle energy distributions
- More than 1 component (IC, secondary particles)
- Others models
- The Striped Wind model, where the emission region is outside the light cylinder (e.g the work of Jérôme Pétri)
■ I. Arka \& G.Dubus predict for the near wind emission a power law with a sub-exponential cut-off ( $b=$ 0.35)
(Pulsed high energy $\gamma$ rays from thermal populations in the current sheets of pulsar winds A\&A 2012 )




## Conclusions

－All investigated PSRs seem to exhibit a sub－exponential cutoff shape，both for phase averaged and resolved spectra
－Prospects for ground detection of pulsars are not exiting if the sub－exponential shape is really at play．

■ 2 only detectable PSRs
－Vela
■ B1706－44
■ Things get better if there are broken power laws instead

■ Few detectable PRS
－Vela
－Geminga
－B1706－44
－PSRJ1907＋0602

## Perspectives

－ 4 out of 6 pulsars were investigated using only 2 years of data ：more statistics could help clarifying the spectra shapes．
■ HESS II is online since july 2012 ： southern hemisphere PSRs will be investigated soon．
－An improved analysis will be made using phase resolved spectra and H－test for signal predictions．


Thank you

## annex

| PSR | $\phi_{0}\left(\mathrm{MeV} \cdot \mathrm{cm}^{-2} \cdot \mathrm{~s}^{-1}\right)$ | $a$ | $E_{0}(\mathrm{MeV})$ | $E_{c}(\mathrm{MeV})$ | $b$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Vela | $2.41 .10^{-9}$ | -1.53 | 1000 | 2934 | 1 |
| Y | 3 | 4 | 5 | 6 | s |
| Z | 5 | 6 | 7 | 8 | s |

