Duty Cycle of Radio Mode Feedback

Laura Bîrzan (Leiden Observatory)

Collaborators: David Rafferty, Huub Röttgering (Leiden Obs.), Brian McNamara (U. Waterloo), Paul Nulsen (CfA), Michael Wise (ASTRON)

Balancing Cooling with Cavities

- Bîrzan et al. 2004; Dunn et al. 2004, 2005; Rafferty et al. 2006
- >50% of the systems with cavities can balance cooling, considering the enthalpy (Rafferty et al. 2006).

Balancing Cooling with Cavities

- Bîrzan et al. 2004; Dunn et al. 2004, 2005; Rafferty et al. 2006
- >50% of the systems with cavities can balance cooling, considering the enthalpy (Rafferty et al. 2006).

Cooling Flow Clusters

- We do not find cavities in all cooling flow clusters
 - Some clusters may not have cavities (e.g., A1650, Donahue et al. 2005):
 - Heating from "sloshing" (Zuhone et al. 2010)
 - In a cooling stage (e.g., A1068, McNamara et al. 2004)
 - Location and orientation (Ensslin & Heinz 2002; Bruggen et al. 2009)
 - Depth of the observation
- Goal: To understand the biases/selection effects in the detectability of current X-ray cavity samples
- ➡ Need complete samples of cooling flows

Subsamples of Cooling Flow Clusters

- Complete samples (flux limited): B55 and HIFLUGCS
- Identify cooling flow systems (Chen et al. 2007, Sanderson et al. 2006, 2009; Cavagnolo et al. 2009, etc.)
- Underling origin for the CF/NCF dichotomy:
 - Separation occurs early on in the cluster evolution (pre-heating; e.g., McCarthy et al. 2008):
 - Heating from mergers (Poole et al. 2008, Burns et al. 2008),
 - Heating from TeV gamma rays from blazars (Pfrommer et al. 2011)
 - Separation occurs late:
 - Destruction of CF due to merger (Rossetti & Molendi 2010, 2011)
 - Destruction due to powerful AGN (Guo & Oh 2009)
 - ➡ Both are improbable? (Poole et al. 2008, Pfrommer et al. 2011)

CF/NCF Separation (continued)

CF/NCF Separation (continued)

Rafferty et al. (2008)

CF/NCF Separation (continued)

 Star formation and H-α (and hence cooling) seems
4 to occur if

$$\eta_{\min} = \min\left(\frac{\kappa T}{\Lambda n_{\rm e} n_{\rm H} r^2}\right) \sim \frac{1}{f_{\rm c}} \le 5$$

(Voit et al. 2008)

• Similar to Sharma et al. (2011) criterion:

$$\min\left(t_{\rm cool}/t_{\rm ff}\right) \lesssim 10$$

CF vs NCF

- CF systems also separate based on radio luminosity of BCGs (from Mittal et al. 2009):
 - All high-radio-luminosity systems are consistent with t_{cool} ≤ 5 × 10⁸ yr
- And projected optical--Xray separation
- Mergers are randomly distributed:
 - mergers are not primary means of quenching cooling

Bîrzan et al. (2012 in prep)

CF vs NCF

- CF systems also separate based on radio luminosity of BCGs (from Mittal et al. 2009):
 - All high-radio-luminosity systems are consistent with t_{cool} ≤ 5 × 10⁸ yr
- And projected optical--Xray separation
- Mergers are randomly distributed:
 - mergers are not primary means of quenching cooling

Cooling Flow Samples

- η_{min}of 5 ≈ Central cooling time of 5 × 10⁸ yr (only 1 object is different: A2065)
- 49 systems require heating: 31 have detected cavities
- For 18 systems without detected cavities, we perform simulations to place limits on how much energy may be present but undetected

Bîrzan et al. (2012 in prep)

Simulation Parameters

- Double-β model ➤ 3D emissivity ➤ 2D SB ➤ MARX ➤ Sim. image
- Assuming adiabatic expansion (to place limits on bubble sizes and locations) and buoyancy velocity (to calculate ages)
- Calculate the injection radius assuming:

$$4 \, pV \sim P_{\rm cav} t \sim L_{\rm X} t$$

where t is the time between the outbursts ($\approx 10^8$ yr)

Heating vs. Cooling for Complete

Bîrzan et al. (2012 in prep)

- Roughly ~65% of cooling flow clusters have detected cavities (~80 % when we exclude the corona class)
 - Similar to the Dunn et al. (2006) finding for a sample of cooling flows (~70%)

Heating vs. Cooling for Complete

Bîrzan et al. (2012 in prep)

Sunday, June 17, 12

Summary and Future Work

- Roughly 65% of cooling flows (40% of all clusters) have detected cavities
- Of the others, most could have significant cavity power yet remain undetected in existing images (under simple assumptions), or may be in a cooling stage
- Further work needed:
 - Investigate with radio images (Burns et al 1990, Mittal et al. 2009) using EVLA, GMRT, LOFAR
 - Add rims to cavities
 - Investigate different schemes for bubble evolution

What can LOFAR add?

- For NCF: search for radio halos (see Cassano talk)
 - study complete samples to understand the fraction of NCF systems with halos
- However, some CF systems might also have a halo (e.g., A1689, Vacca et al. 2011)
- For CF: mini-haloes, re-energizing of the old AGN activity by sloshing