Detection and characterisation of the first Planck high-z candidates

Inés Flores-Cacho
(IRAP - CNRS/Université de Toulouse)

on behalf of the Planck Collaboration
Acknowledgements

The scientific results that we present today are the product of the Planck Collaboration, including individuals from more than 50 scientific institutes in Europe, the USA and Canada.

Planck is a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA) and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.
Millenium Simulation
Detection of high-z clusters/groups/proto-clusters
- Via their X-ray emission (heated gas - enough in virialising objects?)
- Via their SZ signature
- Via their galaxy emission
 - Optical+nIR
 - IR (SPITZER, Herschel)
 - mm/sub-mm
 - CO emission

Few tens of confirmed clusters at z>1.0

- Brodwin et al. (2012) $z=1.75$
- Gobat et al. (2010) $z=2.07$
- Carilli et al. (2011) $z=4.05$
- Čapak et al. (2011) $z=5.3$

Fassbender et al. (2010) $z=1.56$
Planck’s unique capabilities

Full-sky coverage
Wavelength range 0.35-3 cm
The Planck Multi-Wavelength Detection

The Planck signal:

\[S_\nu = S_{\text{gal-dust}} + S_{\text{CMB}} + S_{\text{CIB}} + S_{\text{dust-gal-cl}} + N \]

Local correlation and template removal:

- Use only HFI: 857-100 GHz
- Cleanest 30% of the sky
- \(S_{\text{gal-dust}} \) --> IRAS 100 \(\mu m \)
 (Galactic Cirrus Color Cleaning - CoCoCoDeT - Montier et al. 2010)
- \(S_{\text{CMB}} \) --> HFI 143 GHz

4 clean maps: 217GHz, 353GHz, 545GHz, 817GHz

Source Detection:

- Two excess maps: at 353GHz & 545 GHz
 \((\text{Excess Map})_{353} = (\text{Clean Map})_{353} - (\text{Power Law Interpolation})_{217->857} \)

- Joint detection using Mexican Hat Wavelet filter

Blind Multi-Frequency + Multi-Scale Detection
The Planck Multi-Wavelength Detection

100um, 857GHz, 545GHz, 353GHz, 217GHz, 143GHz, 100GHz

Galactic dust emission cleaning → CMB cleaning

Detection over excess maps

Planck List of High-z candidates

Inés Flores-Cacho

XMM-Newton Science Workshop on Galaxy Clusters

Madrid, 23/05/2012
First confirmed candidates

- Spatial cross-correlation with:
 - SPT sources (Vieira et al. 2010, Greve et al. 2012)
 - Herschel ATLAS (Herranz et al. 2012, Fu et al. 2012)
 - HLS (Egami et al. 2010, Combes et al. 2012)
 - (Proto)clusters in the literature (Galametz et al. 2009)

- Five identified objects
 - Lensed galaxies or (proto)clusters
 - Redshift range: 1.5-5.2

- High-z sources are blindly detected with Planck

- The Planck properties of these confirmed candidates are not different from others in the sample

Multi-wavelength validation
A new distant cluster candidate

High-z Candidate

P.I.: L. Montier

250 μm

350 μm

500 μm

FWHM~18" FWHM~25" FWHM~36"

Planck

857GHz 545GHz 353GHz 217GHz

FWHM~5'

Herschel/SPIRE

Inés Flores-Cacho

XMM-Newton Science Workshop on Galaxy Clusters

Madrid, 23/05/2012
A new distant cluster candidate

Five resolved sources in Herschel/SPIRE coincident with Planck detection
A new distant cluster candidate

Summer 2011 - Optical & nIR broad band follow-up at CFHT

MEGACAM: g, i (Depth: 25.0, 23.5 mag)
WIRCAM: J, H, Ks (Depth: 22.5, 22.0, 21.5 mag)

Evidence of an over-density of red galaxies

J-K<1 1 < J-K< 1.5 1.5 < J-K< 4

Herschel / SPIRE blobs coincident with Planck detection

Over-density of sources in J-K > 1.5
A new distant cluster candidate

Photometric Redshift Estimate
Hyper-z (Bolzonella et al. 2000)

Cross correlation between SPIRE / CFHT sources

- Individual Galaxies
Photometric Redshift Estimate

Hyper-z (Bolzonella et al. 2000)

Cross correlation between SPIRE / CFHT sources

- Individual Galaxies

Inés Flores-Cacho
XMM-Newton Science Workshop on Galaxy Clusters
Madrid, 23/05/2012
A new distant cluster candidate

Photometric Redshift Estimate
Hyper-z (Bolzonella et al. 2000)

Cross correlation between SPIRE / CFHT sources

Cluster candidate?
A new distant cluster candidate

October 2011 - Spectroscopic follow-up with XSHOOTER@VLT

Wavelength range: 300-2500 nm
5 targets

K band

SPIRE 250 μm

2D Spectra

3 detections in Hα and NII
Robust!

No NIR line detection of 2 others sources
Due to extinction?

No UV/Optical line detection for all sources
Consistent with high extinction

Inés Flores-Cacho

XMM-Newton Science Workshop on Galaxy Clusters

Madrid, 23/05/2012
A new distant cluster candidate

Zeroth order physical characterisation:

- Velocity dispersion
 --> Virialised DM halo mass $\sim 1.3 \times 10^{13} \, M_\odot$

- Width of Hα line
 --> SFR $> 60 \, M_\odot/yr$ per galaxy

 --> $L_X \sim 10^{43} \, \text{erg/s}$

- L_X-T_X scaling relation (Maughan et al. 2011)
 --> $T_X \sim 1.2 \, \text{keV}$
Prospectives with X-rays

New distant cluster candidate?
No evidence for counterparts in ROSAT
Given its SFR, L_X and T_X:
--> Probably young object, not yet virialised

Known groups/clusters at similar redshifts:
XMMXCS J221559.6-173816.2: (Stanford et al. 2006, Mehrtens et al. 2012)
 $z=1.46$, $T_X=4.3\text{keV}$, $L_{500}=6.8\times10^{44}\text{erg/s}$

3C322: (Belsole et al. 2004)
 $z=1.7$, $T_X=4\text{keV}$, $L_X=5\times10^{44}\text{erg/s}$

XMMU J1007.4+1237: (Fassbender et al. 2011)
 $z=1.56$, $T_X=4.2\text{keV}$, $L_{500}=2.1\times10^{44}\text{erg/s}$
Prospectives with X-rays

XMM XCS sample (Mehrtens et al. 2012)
Simulated spectrum (400ks) as seen by ATHENA of a galaxy group at $z=2$ with $T_X=2$ keV

From ATHENA Yellowbook
Summary

Planck allows us to build a unique sample of distant candidates

Potentially looking the first forming clusters/groups

Blind all-sky multi-wavelength & multi-scale detection
First list of a few 100s candidates for high-z objects
Five confirmed as high-z lensed galaxies or (proto)clusters

Multi-wavelength characterisation follow-up on-going
 - Confirm/provide redshift estimate
 - Constrain the nature of the Planck detected objects
 - Synergy with X-ray studies