

Radio-loud AGN: is there a link between luminosity and cluster environment?

Judith Ineson

Judith Croston, University of Southampton, UK Martin Hardcastle, University of Hertfordshire, UK Ralph Kraft, Harvard-Smithsonian Center for Astrophysics, USA Daniel Evans, Elon University, USA Matt Jarvis, University of Hertfordshire, UK

- The problem
 - AGN radio jets affect the galaxy cluster environment
 - AGN feeds on environment
 - What is the relationship between the radio properties and the environment?

- Historical results
 - Comparing FRI and FRII RGs
 - Difference in environment at low redshift
 - Longair & Seldner (1979), Prestage & Peacock (1988)
 - Change of environment with redshift
 - Yee &Green (1987), Hill & Lilly (1991)

Hill and Lilly, 1991

Southampto

• Problems

- Sample bias
- Sub-sample selection
 - FRI/FRII vs HERGs/LERGs
- Disentangling evolution

Southampto

- HERG/LERG results
- LERG luminosity correlates with environment richness
 - Best (2004), Hardcastle (2004), Croston et al (2008)
- HERG luminosity does not ...
 Best (2004), Belsole et al (2007)
- ... or maybe it does
 - Wold et al (2000)
- Possible evolution of HERG environment
 - Belsole et al
- ... Or not
 - Wold et al

UNIVERSITY OF

Southan

- Outstanding questions
 - Is radio luminosity related to environment richness?
 - Does the environment evolve?
- ERA programme
 - Examine radio luminosity vs environment at one redshift
 - Compare this with results across different redshifts
 - Use properties of intra-cluster medium as measure of environment richness

Samples

• Starting point

- McLure et al (2004) ZP5 sample

Samples

ERA sample

Comparison samples

z<0.03: Croston et al, 20080.1<z<0.5: Shelton et al (in preparation)0.45<z<1.0: Belsole et al, 2007

ICM properties

Temperature

 R₅₀₀ radius
 (Arnaud et al, 2005)

Southampto

- Luminosity
 - Surface brightness profiles
 - Beta model

Examples

Results – ERA sample

Radio luminosity vs Environment richness

ERA sample	
All data	p < 0.05
HERG	N/S
LERG	p < 0.005
LERG, no	p < 0.02
3C 295	

Weak correlation between radio luminosity and environment richness

Results – comparison samples

Radio luminosity vs Environment richness

All samples		
All data	p < 0.0001	
HERG	p < 0.04	
LERG	p < 0.0001	
Without Croston sample		
All data	p < 0.004	
HERG	p < 0.04	
LERG	p < 0.003	

Supports result from ERA sample

Results – comparison samples

Redshift vs Environment richness

All samples	
All data	p < 0.01
HERG	N/S
LERG	N/S
Without Croston sample	
All data	N/S
HERG	N/S
LERG	N/S

No evidence of environment evolution

Summary

- Indications of correlation between large-scale environment and radio luminosity
 - Potential scaling relation for AGN feedback models
- No evidence of environment evolution
 - But samples need improving
- Improve comparison data
 - Complete search of archives
 - Convert optical measures?
- Comparisons with host galaxy properties
 - Black hole mass (HST data and spectroscopy, McLure et al, 2004)
- Comparisons with optical environment measures
 - B_{gg} (WHT wide-field imaging, Herbert, PhD thesis)