Bulk motion measurements in clusters of galaxies with ATHENA

Nevalainen

Department of Physics, University of Helsinki, Finland

XMM-Newton 2012 Science Workshop May 21-23, 2012

Bulk motion measurements in clusters of galaxies with ATHENIA-like mission

Nevalainen

Dependent of Physics, University of Helsinki, Pikland

XMM-Newton 2012 Science Workshop May 21-23, 2012 1) ATHENA

- * ATHENA (Advanced Telescope for High ENergy Astrophysics), (ex-XEUS, ex-IXO) was one of three L-class (large) missions being considered by European Space Agency in the Cosmic Vision 2015-2025 plan.
- * In May 2012 the Jupiter mission Jupiter Icy Moons Explorer (JUICE), (formerly Laplace) was chosen
- * The technology development of ATHENA will continue
- * I will present here some expected bulk motion measurements of clusters of galaxies with a future satellite approximating the capabilities of ATHENA
- * The instrument responses used are from the ATHENA Yellow Book

ESA/SRE(2011)17 December 2011

Athena

The extremes of the Universe: from black holes to large-scale structure

Assessment Study Report

Focal instruments

- * Wide Field Imager
- * dE = 150 eV @6 keV
- * FOV: 25x25 arcmin

- * X-ray Microcalorimeter spectrometer XMS
- * dE = 3 eV @6 keV
- Similar energy resolution as in current Chandra and XMM high resolution spectrometers, but ~100-1000 times the effective area at 0.5 keV
 - Extends to 10 keV (Fe XXV K α !)
 - FOV: 2x2 arcmin, spatial resolution 10"
- Spatially resolved high spectral resolution X-ray spectroscopy

2) Bulk motions in clusters of galaxies

ACCRETION FLOWS ~1000 km s⁻¹ Frenk et al., 1999, ApJ, 525, 554

0.5

-0.5

for gas [1000 km s⁻¹]

MINOR MERGERS ~ 1000 km s⁻¹ Nagai et al., 2003, ApJ, 587, 524

RESIDUAL ~ 100 km s⁻¹

MAJOR MERGERS several 1000 km s⁻¹ Markevitch et al., 2002, ApJ, 567, L27

Doppler shift

- * Mergers happen in all directions
- * Most sharp shock features are hidden due to projection
- * Most of the lines-of-sight towards merging subunits contain a significant radial velocity component
- * This can potentially be measured with the doppler shift of the X-ray emission lines

Doppler shift

- ★ LOS velocity of 100 1000 km s⁻¹ means 2-20 eV shift in the emission line centroid energy at 6 keV (Fe XXV and XXVI Ka line)
- * The currently most powerful X-ray instruments at 6 keV (XMM-Newton/EPIC, Chandra/ACIS and SUZAKU/XIS CCDs) have relatively low energy resolution ~100 eV
- * Gaussian centroid can still be determined better than within 100 eV, depending on the gain calibration accuracy
- * EPIC/MOS gain accuracy ~ 5 eV = 250 km s⁻¹
- * Relative motions can be measured to better accuracy

Observational constraints

- * Suzaku has been used to place upper limits for the bulk motion velocities at ~1000 km s⁻¹ level in several clusters:
 - A2319 (Sugawara et al., 2009, PASJ, 61, 1293)
 - Centaurus (Ota et al., PASJ, 59, 351)
 - AWM7 (Sato et al., 2008, PASJ, 60, 333)

Nearby minor merger A2256

 First significant detection in A2256: Suzaku radial velocity difference btw. main cluster and secondary peak of 1500∓300 ∓300 km s⁻¹ (Tamura et al. 2011, PASJ in press, arXiv:1104.2667)

 Chandra T map shows the colder subclump (Sun et al., 2002, ApJ 565, 867)

How could ATHENA-like mission improve the situation?

Can ATHENA make a breakthrough by mapping the velocity field in the merging subclumps in nearby minor mergers?

00

A2256 with ATHENA/XMS

- * ATHENA/XMS 100 ks simulation for A2256 main cluster and subclump with the owl response
- * Emission model (bremsstrahlung continuum + collisional excitation lines) parameters from Tamura et al, 2011, PASJ in press, arXiv:1104.2667
- * Background included (90% resolved CXB)

A2256 with ATHENA/XMS

- ★ Fit the simulated data with the input model →
- * The statistical uncertainty of the redshift ($\sigma_z \sim 10^{-6}$) corresponds to a velocity precision of v = ∓ 3 km s⁻¹, yielding a 500 σ detection for the clump motion

- * Measurement is very precise because many line features are resolved. Each centroid gives weight to χ^2
- * The gain needs to be accurate to dE/E = 0.1eV/6keV = 1e-5 for absolute velocity measurement. Differential measurement between the subclump and main cluster less demanding

Velocity mapping

★ Dividing the emission into (0.5 arcmin)² boxes (i.e. 5x5 map for the full XMS FOV) yields statictical precision level of ~10 km s⁻¹ for A2256 subclump →

BREAKTHROUGH!

 The major mergers have bigger velocities an thus are easier to map

Can ATHENA make a breakthrough by <u>mapping</u> the omnipresent 100 km s⁻¹ level of residual bulk motions?

- * Single XMS pointing only covers a small angle.
- Wide Field Imager can complement the mapping by covering a larger region with sub-arcmin spatial resolution and ~ 100 eV energy resolution
- ★ 100ks WFI simulation of A2256 main cluster and subclump →
 - Fe XXV K α shift detected at ~25 σ level

***** WFI simulations using:

- KT = 5 keV cluster at z=0.1
- L_{bol}(r₅₀₀) = 7 × 10⁴⁴ erg s⁻¹ (from Pratt et al. 2009 L-T relation)
- r₅₀₀ = 10 arcmin (using r₅₀₀ T relation of Vikhlinin et al. 2006)
- → β profile with β = 2/3 and r_{core} = 0.1 r_{500} for surface
 brightness distribution
- detection box size 0.1 r₅₀₀ (= 100 kpc) in the center, increasing outwards
- background assuming 90% resolved CXB
- 100 ks exposure

Results

- In the center, the bulk velocity can be mapped with angular resolution of 0.1 r₅₀₀ and v = 100 km s⁻¹ for a kT Distance [r₅₀₀]
 5 keV cluster with 100 ks exposure
- ★ At a distance of 0.5 r₅₀₀ from the center, the background reaches the cluster emission level at E> 6 keV which degrades the precision to ~1000 km s⁻¹ level
- The hottest clusters can still be mapped with spatial resolution of 0.3 r₅₀₀ at 400 km s⁻¹ level at 0.5 r₅₀₀ using 100 ks exposure

T	Distance [r ₅₀₀]	Spatial resol. ∆r [r ₅₀₀]	Velocity precision ∆v [km s⁻¹]	
			kT 5 keV	kT 8 keV
	0.00	0.1	100	
	0.25	0.2	200	
	0.50	0.3	800	400

Results

★ At least for the hottest clusters the r ≤ 0.5 r₅₀₀ area can be mapped into ~20 regions at a few 100 km s⁻¹ level by WFI 100 ks exposure →

BREAKTHROUGH

Can ATHENA make a breakthrough by mapping the accretion velocities at virial radius?

★ No, the data are too noisy at r₅₀₀ with the current estimate of the background.

ASTRO-H

A2256 ASTRO-H simulation Takahashi et al., 2010, SPIE 7732

 Soft X-ray Spectrometer SXS onboard Astro-H has potential for detecting the bulk motions in the brightest nearby mergers

+ energy resolution ~ half of that of XMS

effective area ~ 1/10 of that of
 XMS at 6 keV

- Soft X-ray Imager SXI of Astro-H for mapping the 100 km s⁻¹ motions?
 - + energy resolution 150eV at 6 keV+ FOV 38'
 - effective area ~ 1/5 of that of ATHENA/WFI → Need ~500ks per cluster

- ***** ATHENA-like mission could measure
 - Bulk motions in major mergers: Piece of cake, as long as movement not close to the plane of the sky
 - Bulk motions in nearby minor mergers: Spatial mapping at ~ arcmin scale with very high velocity precision ~ 10 km s⁻¹ feasible with 100 ks observations using XMS and 100 km s⁻¹ with WFI to larger radii
 - Omnipresent residual velocities: Nearby (z ≤ 0.1) clusters mapped into ~20 regions with WFI up to r ≤ 0.5 r₅₀₀ at a few 100 km s⁻¹ level with a single 100-500 ks pointing