

UNIVERSITÀ DEGLI STUDI DI TRIESTE









**Baryon Census in Hydrodynamical Simulations of Galaxy Clusters** 

Susana Planelles (Univ.Trieste-INAF)

Collaborators: S.Borgani (Univ. Trieste-INAF), G.Murante (INAF Torino), L.Tornatore (Univ. Trieste), K.Dolag (MPA), D.Fabjan (Univ. Lubjana)

> Galaxy Clusters as Giant Cosmic Laboratories XMM-Newton Science Workshop 2012 Madrid, 21st-23rd May 2012

### Outline

#### • Introduction

- Galaxy clusters
- Clusters as cosmological probes
- Cosmological simulations
  - DIANOGA cluster set (S. Borgani's talk)
- Preliminary results
  - Baryon content
  - Cosmological implications
- Summary and future directions

### Galaxy Clusters

General properties
Clusters as cosmological probes
Our purpose

#### **GENERAL PROPERTIES**

- Largest virialized structures in the Universe:  $M \approx 10^{13}$ - $10^{15} M_{\odot}$ ,  $R \approx 1$ -3 Mpc
- Composition: galaxies and stars (~5%), ICM (~15%), DM (~80%)
- Baryon budget: stars in galaxies + ICL + ICM
- Baryonic mass fraction:

$$f_b = f_{st} + f_{gas} = f_{gas}(1+s) \qquad s \equiv \frac{f_{st}}{f_{gas}}$$

$$f_{gas} = \frac{M_{gas}}{M_{tot}} \qquad f_{st} = \frac{M_{st}}{M_{tot}}$$

- Galaxy clusters at X-ray wavelengths:
  - Gravity squeezes gas, heating it to X-ray temperatures
  - Clusters only shine in X-rays if they are massive
    - $\Rightarrow$  clean cluster surveys
  - X-ray observables  $\Leftrightarrow M_{tot} \Rightarrow$  hydro. simulations



### Galaxy Clusters

- General properties
- Clusters as cosmological probes

#### • Our purpose

#### ROLE OF CLUSTERS IN COSMOLOGY

- Cosmological probes:
  - Fair sample of the matter content of the Universe  $\Rightarrow M_b/M_{tot} \sim \Omega_b/\Omega_m$
  - Constraints on cosmological parameters:
    - $f_b(X-ray) + \Omega_b h^2(CMB/BBNS) + h \Rightarrow \Omega_m$  (e.g., White & Frenk 1991)
    - Apparent z-evolution of  $f_{gas} \Rightarrow$  geometry of the Universe (e.g., Allen et al. 2008)
- Challenges:
  - Observed  $f_{gas}$  smaller than expected
  - Intriguing trend with cluster mass
- Possible explanations:
  - Physical processes which lower  $f_b$
  - Undetected baryon components
  - Systematic underestimate of  $\Omega_m$  by WMAP



(White & Frenk 1991)

### Galaxy Clusters

General properties
Clusters as cosmological probes
Our purpose

#### PURPOSE OF THE PRESENT WORK

- Understanding the baryon-mass fraction and its mass and z dependence is crucial to understand astrophysics in galaxy clusters.
- Our tools: a set of hydrodynamical re-simulations of galaxy clusters, characterized by different physical processes, including AGN feedback.
- Main objectives:
  - Baryon content: to study how the fraction and spatial distribution of the baryons are affected by the physical conditions within clusters.
  - Cosmological implications: to analyse some implications for the constraints on cosmological parameters over a large redshift range ( $z\leq1$ ).

### **Cosmological Simulations**

#### DIANOGA CLUSTER SET

- General properties (S. Borgani's talk)
  - Parallel Tree-PM SPH code GADGET-3 (Springel 2005)
  - ACDM model:  $\Omega_{\rm m}$ =0.24,  $\Omega_{\Lambda}$ =0.76,  $\Omega_{\rm b}$ =0.04, h=0.72,  $\sigma_8$ =0.8, n<sub>s</sub>=0.96
  - Re-simulation of 29 Lagrangian regions centred around clusters with  $M_{vir} \ge 10^{15} M_{\odot} h^{-1}$  (24) and  $M_{vir} \approx (1-7) \times 10^{14} M_{\odot} h^{-1}$  (5)
  - Parent DM-only simulation: 1024<sup>3</sup> DM particles; L<sub>box</sub>=1 Gpc h<sup>-1</sup>
- Physics included
  - *NR*: non-radiative run
  - *CSF-M-W*: cooling, SF, metals and SN feedback ( $v_w = 500 \text{ km s}^{-1}$ )
  - *CSF-M-W-AGN*: cooling, SF, metals, SN feedback ( $v_w$ =350 km s<sup>-1</sup>) and AGN feedback
- The set of simulated clusters
  - Final sample: 140 clusters with  $M_{500} \ge 5 \times 10^{13} M_{\odot} h^{-1} (\approx 30 \text{ with } M_{vir} \ge 10^{15} M_{\odot} h^{-1})$
  - Cluster identification: minimum potential + SO method

$$\mathbf{M}_{\Delta} = \Delta \,\rho_c(z) \,(4 \,\pi/3) R_{\Delta}^3$$

 $(\Delta = 2500, 500, 200)$ 

- Baryon mass fraction
- Gas mass fraction
- Stellar mass fraction

### BARYON MASS FRACTION

- NR & CSF-M-W runs:
  - $f_b$  appears flat as a function of  $M_{500}$
  - $f_b$  differs by  $\leq 10\%$  from the assumed cosmic fraction

(e.g., Kravstov et al. 2005, Ettori et al., 2006)

- *CSF-M-AGN* run:
  - Significant baryon depletion for  $M_{500} \leq 10^{14} M_{\odot} h^{-1}$
  - f<sub>b</sub> is closer to the cosmic value for the most massive clusters
  - Better agreement with observations when including AGN feedback



- Baryon mass fractio
- Gas mass fraction
- Stellar mass fraction

### GAS MASS FRACTION

#### • *NR* run:

- $f_g$  appears flat as a function of  $M_{500}$
- $f_g$  is larger than in the radiative runs
- Radiative runs:
  - f<sub>g</sub> increases as a function of mass
  - AGN feedback significantly reduces: -
    - $f_g$  in poor clusters and groups
    - overcooling in the richest clusters
  - f<sub>g</sub> is still smaller than the observed value

$$f_{gas} = \frac{M_{gas}}{M_{tot}}$$

$$(0.10)$$

$$(A) = (A) =$$

- Baryon mass fractio
- Gas mass fraction
- Stellar mass fraction

### STELLAR MASS FRACTION

- General behaviour:
  - $f_{st}$  decreases smoothly with increasing mass and flattens for  $M_{500} \le 10^{14} M_{\odot} h^{-1}$
- *CSF-M-W*:
  - $f_{st}$  is quite large: ~(30%-50%)  $f_b$
- CSF-M-AGN:
  - $f_{st}$  is lowered by ~1/3 but still larger than observations by a factor 2-3
  - None of our simulations reproduce the observed strong trend of  $f_{st}$  with mass



Introduction
Determination of Ω<sub>m</sub>

• Deviations from the model

#### INTRODUCTION

- Basic idea: galaxy clusters are so large that their matter content should provide a ~ fair sample of matter content of the Universe (White & Frenk 1991)
- Constraining  $\Omega_m$ : (e.g., Allen at al. 2008)

• Main assumptions: 1)  $Y_b$  does not evolve with z

2) The ratio s=f<sub>st</sub>/f<sub>gas</sub> holds constant at any radius and z

- Main advantages:
  - This test can be performed with a small statistics
  - Relative insensitivity to cluster selection

• Introduction

- Determination of  $\Omega_{\rm m}$
- Deviations from the model

#### **BARYONIC BIAS**

- Reduced sample: the hottest ( $T_{sl} \ge 4 \text{ keV}$ ) and most X-ray luminous galaxy clusters
- Results on Y<sub>b</sub>:



- Roughly constant up to z=1 (e.g., Eke et al. 1998, Kravstov et al. 2005)
- Dependence on physics within  $R_{2500}$

Introduction

• Determination of  $\Omega_{m}$ 

• Deviations from the model

#### DEVIATIONS FROM THE MODEL

• Main assumptions: 1)  $Y_b$  does not evolve with z 2) The ratio  $s=f_{st}/f_{gas}$  holds constant at any radius and z

• However, these assumptions are not completely valid in our simulated dataset!  $\Rightarrow$  we evaluate how  $\Omega_m$  changes due to the variation of  $Y_b$  (=D<sub>b</sub>) and s (=D<sub>st</sub>) as a function of R<sub> $\Delta$ </sub>, z, and physics:

$$D_b \equiv \frac{\Omega_{\rm m}' - \Omega_{\rm m}}{\Omega_{\rm m}} = \frac{\Delta \Omega_{\rm m}}{\Omega_{\rm m}} = \frac{Y_{\rm b}(\langle R_{\Delta}, z = z_o)}{Y_{\rm b}(\langle R_{\Delta}, z = 0)} - 1$$

$$D_{st} \equiv \frac{\Omega_{\rm m}' - \Omega_{\rm m}}{\Omega_{\rm m}} = \frac{\Delta \Omega_{\rm m}}{\Omega_{\rm m}} = \frac{1 + s(\langle R_{\Delta}, z = 0)}{1 + s(\langle R_{\Delta}, z = z_o)} - 1$$

(Ettori et al. 2006)

 $R_{\Delta} = (R_{vir}, R_{200}, R_{500}, R_{2500})$   $z_0 = (0.3, 0.5, 0.8, 1)$ 

Introduction

- Determination of  $\Omega_{\!_{I\!M}}$
- Deviations from the model

#### DEVIATIONS FROM THE MODEL

- NR runs
  - Correction to  $\Omega_m$  due to the variation of  $Y_b$  with z and overdensity
- Radiative runs
  - $\Delta \Omega_m / \Omega_m$  has two contributions due to the variation with z of Y<sub>b</sub> and s
- Different physical models ⇒different z-dependent corrections to Ω<sub>m</sub>



### Conclusions

#### SUMMARY AND FUTURE DIRECTIONS

- Main conclusions
  - Consistency with observations in  $f_b = f(M_{500})$  and  $f_g = f(M_{500})$ .
  - None of our simulations is able to reproduce the observed  $f_{st}=f(M_{500})$ . However,

better agreement with observations when AGN feedback is included.

- $Y_b \approx$  constant with z but shows some dependence on physics within  $R_{2500}$
- Future directions
  - Analyse in detail the different stellar components (ICL+BCG+satellites)
  - Constraints on  $\Omega_m$ - $\Omega_\Lambda$  using  $f_{gas}(z) \propto d_{ang}(z, \Omega_m, \Omega_\Lambda, w)$



"I think you should be more explicit here in step two."

# Thank you!

#### COSMOLOGY MARCHES ON





#### OBSERVATIONAL SAMPLES

| Sample                 | Best fit                                                                                                           |
|------------------------|--------------------------------------------------------------------------------------------------------------------|
| Lin et al. (2003)      | $f_{\rm b,500} = 0.148^{+0.005}_{-0.004} (M_{500} / [3 \times 10^{14} \mathrm{M_{\odot}}])^{(0.148 \pm 0.040)}$    |
| Giodini et al. (2009)  | $f_{\rm b,500} = (0.123 \pm 0.003) (M_{500} / [2 \times 10^{14} \mathrm{M_{\odot}}])^{(0.09 \pm 0.03)}$            |
| Laganá et al. (2011)   | $f_{\rm b,500} = 10^{(-0.930 \pm 0.018)} (M_{500} / 10^{14} \mathrm{M_{\odot}})^{(0.136 \pm 0.028)}$               |
| Z11+S09                | $f_{\rm g,500} = 10^{-(1.07\pm0.02)} (M_{500}/[10^{14}{\rm M_{\odot}}])^{(0.30\pm0.07)}$                           |
| V06+APP07+S09          | $f_{\rm g,500} (h/0.7)^{3/2} = (0.093\pm0.002) (M_{500}/[2\times10^{14}{\rm M_{\odot}}])^{(0.21\pm0.03)}$          |
| Lin et al. (2003)      | $f_{\rm st,500} = 0.0164^{+0.0010}_{-0.0090} (M_{500} / [3 \times 10^{14} \mathrm{M_{\odot}}])^{-(0.26 \pm 0.09)}$ |
| Gonzalez et al. (2007) | $f_{\rm st,500} = 10^{7.57 \pm 0.08} M_{500}^{-(0.64 \pm 0.13)}$                                                   |
| Giodini et al. (2009)  | $f_{\rm st,500} = (0.050 \pm 0.001) (M_{500} / [5 \times 10^{13} \mathrm{M_{\odot}}])^{(-0.26 \pm 0.09)}$          |
| Laganá et al. (2011)   | $f_{\rm st,500} = 10^{(-1.54 \pm 0.10)} (M_{500} / [10^{14.5} \mathrm{M_{\odot}}])^{(-0.36 \pm 0.17)}$             |

#### INTRACLUSTER LIGHT

