# The thermal and dynamical state of cluster cores

#### Jeremy Sanders

Institute of Astronomy, University of Cambridge

A.C. Fabian, R.K. Smith, J.R. Peterson, S.W. Allen, R.G. Morris, J. Graham, R.M. Johnstone, C.S. Crawford, K.A. Frank, H.R. Russell

# THERMAL STATE OF CLUSTER CORES

# **Cluster radial properties**



Mean radiative cooling time

#### **Temperature**

- Steeply peaked surface brightness profiles
- Mean radiative cooling times in centres < 10<sup>9</sup> years
- Cluster centres cooler by  $\sim 1/2$  to 1/3

# Cooling in cluster cores

If no heating, should be a mass deposition rate

$$\dot{M} \approx \frac{2}{5} \frac{L\mu m}{kT}$$

- Luminosities imply 10-1000s  $M_{\odot}~yr^{-1}$
- "Cooling flow" (Fabian 1994)

# Line emissivity vs temperature



Sanders & Fabian 2011

# Lack of cool X-ray emitting gas

#### Abell 1835: Peterson et al 2001 (60 ks XMM-Newton RGS observation)



Less than 10% of cooling rates expected

Down to 1/2 or 1/3 outer temperature

see also Peterson et al 03, Kaastra et al 01, 03, Tamura et al 01,...



# Centaurus cluster

#### Fabian et al 2005

#### Chandra 200ks observation

#### Crawford et al 2005



- Centaurus: metal rich (2 solar), nearby (z=0.010) and cool core
- Ideal object for deep 160 ks XMM RGS observation



# Centaurus – spectral fitting limits on gas kT



## **Deep observation sample**

Chandra

#### Sanders et al 2010

Chandra image

- Cooler objects with strong emission lines:
- A262, A3581 and HCG62
- Exposure times 155 to 190 ks



1.5



#### Deep sample – RGS spectra



# Volume filling fraction

- Cool gas has low volume filling fraction: multiphase
- Blobs have half temperature of surrounds
- Emissivity 4× larger (if pressure balance)
- AGN heating cannot work in volume-averaged way
- Range in temperature larger in hotter clusters, e.g.

15 in A2204 (Sanders et al 2009a)
 12 in Perseus (Sanders & Fabian 2007)
 10 in A1835 (Sanders et al 2010)

• Non radiative cooling?



# 2A 0335+096: multiphase material



0.5 keV component

1 keV component

Volume filling fraction ~0.2% Also seen in RGS as Fe XVII

Sanders et al 2009a



### Stacked ≤ 1 keV temperature spectra



### Stacked ≤ 1 keV temperature spectra



### Stacked ≤ 1 keV temperature spectra



# DYNAMICAL STATE OF CLUSTER CORES

#### Simulations of cluster-wide motions



Cool core clusters are the most relaxed

#### Pressure map of the Perseus cluster

1 arcmin 22 kpc

Weak shock (M≈1.21 from surface brightness)

Fabian et al 2006

Radio source

Sanders & Fabian 2007

Ripples in surface brightness – sound waves 1 arcmin 22 kpc

# Sloshing of gas: cold fronts



14 kpc

Straight filaments – laminar flow Hatch et al 2006: Smooth velocity gradient of few 100 km s<sup>-1</sup> and 50-100 km s<sup>-1</sup> dispersion

Perseus cluster

Hα from WIYN Conselice et al 01

# How to measure velocities

- Directly (discussing here)
- Indirectly
  - Fluctuation analysis (see Schuecker 2004, Churazov et al 2012, Sanders & Fabian 2012)
  - Resonance scattering (e.g. Churazov et al 04, Werner et al 09, de Plaa et al 12)
  - Stellar vs gas potentials (Churazov et al 08, 10)
  - Metals (e.g., Rebusco et al 05, Graham et al 06, Sanders et al 04, 07)

# Directly placing limits on turbulence

- XMM RGS detects emission lines from cluster cores, ellipticals and groups
- Line width sensitive to gas motions
- Additional broadening by
  - Instrumental effects (accounted for)
  - Thermal width (accounted for)
  - Extent of source, as RGS are slitless spectrometers (broadening is 0.12/m Å/arcmin)

#### Abell 1835: a relaxed galaxy cluster



Abell 1835 z = 0.2523  $L_{x} \sim 2 \times 10^{45} \text{ erg s}^{-1}$ 

Relaxed, very luminous galaxy cluster

#### Abell 1835: measuring line widths



# A1835: Confidence limits on broadening

Fit spectrum and fit for additional broadening



Limit is 274 km s<sup>-1</sup> (90% confidence)

## A1835: Estimating turbulent energy

$$\frac{E_{turb}}{E_{therm}} = \frac{\gamma}{2}M^2 = V_{los}^2 \quad \frac{\mu m_p}{kT}$$

 90% confidence upper limit of 13% of thermal energy in turbulence

# Narrow lines in large sample



### Limit as a function of temperature



Sample is not complete, but

Seven objects with limits of less than 500 km s<sup>-1</sup>

RBS797, Zw3146, NGC4261, A1991, A2204, RXCJ2149, A2667

Half of 62 targets have limits < 700 kms<sup>-1</sup>

# Improving on these results

 Target sources with small spatial extents to obtain the best limits

and / or

 Model the broadening caused by extent of sources and account for it

### **Compact sources**

![](_page_33_Figure_1.jpeg)

# Accounting for source extent

- In Sanders et al 2011, compared simulated widths with real widths
- Trying simpler technique: Fe-L emission line images convolved with response
- Very important to remove continuum first!
- Preliminary results promising: several clusters
  < 300 km s<sup>-1</sup>
- Despite ~10<sup>45</sup> erg/s flowing in these massive objects from central AGN, very low velocities

# Conclusions

- Complex multiphase temperature structure in cores of cooling flow clusters
  - Temperatures range can be factor of  $\sim 10$
  - Also Correlation between cool X-ray material, atomic, molecular material and stars.
  - Non radiative cooling?
- Limit turbulence on 62 targets
  - 7 targets with < 500 km s<sup>-1</sup>
  - Several targets < 300-400 km s<sup>-1</sup>
  - Half of targets < 700 km s<sup>-1</sup>
  - Little evidence for any large velocities, despite strong feedback
  - Biased sample, however!

# Future – ASTRO-H, launch 2014

Perseus, central arcmin radius, ASTRO-H, 100ks

![](_page_36_Figure_2.jpeg)

# ASTRO-H: detail around Fe-K in Perseus

![](_page_37_Figure_1.jpeg)

7 eV spectral resolution (5 eV achieved on ground)