The cold feedback mechanism

Noam Soker New results by Michael Refaelovich, Avishai Gilkis, & Shlomi Hillel **Technion, Israel** May 2012

SUMMARY

Forward shock pushed gas at (9,1)kpc to (10,1)kpc. Velocities: 100-300 km/sec.

See: Gilkis & Soker 2012, accepted by astro-ph arXiv:1205.3571 (poster 3)

Note that Bondi accretion is a complete failure (see poster 6)

The <u>cold feedback mechanism</u> (Pizzolato & Soker 2005, 2010) is supported by observations of cold gas and by recent theoretical studies

(e.g., Revaz et al. 2008; Pope 2009; Wilman 2009, 2011; Nesvadba et al. 2011; Gaspari2012a ,b; McCourt et al. 2012; Sharma et al. 2012; Farage et al. 2012)

Cooling Flow clusters

- Cooling flow does exist, but at a moderate mass cooling rate. (The moderate cooling flow model; Soker, White, David, & McNamara 2001).
- Mass accreted by the central BH originates in non-linear overdense blobs of gas residing in an extended region: ~ 1-30 kpc <u>The cold feedback cycle (Pizzolato & Soker)</u> NOT BONDI ACCRETIO
- Part of the cold gas is ejected back to the ICM, at velocities of ~0.01-0.1c, making <u>mass</u> an ingredient in the feedback cycle (in addition to <u>energy</u>) (Pizzolato & Soker).
- The ejected mass, a slow massive wide (or precessing) jets, inflate `fat' bubbles (Sternberg & Soker;

Gilkis & Soker – Poster 3; Rafaelovich & Soker – Poster 7)

 The same mechanism that forms slow massive wide jets can expel mass in galaxy formation, and explain the BH-bulge mass correlation (Soker 2010, 2011).

It is well established now that Bondi accretion does <u>not</u> work

- (1) No time for feedback because Bondi radius
 (<<1kpc) is much smaller than cooling region
 (~10 kpc).
- (2) Accretion rate is much too low in clusters (in some simulations an accretion rate of 100 Bondi is used, and it is still called "Bondi accretion").
- (3) NEW In places where the predicted Bondi accretion rate is low, ram pressure by stellar winds near the central BH might further reduce the accretion rate (see poster 6 by Shlomi Hillel).

The <u>cold feedback mechanism</u> (Pizzolato & Soker 2005, 2010) is supported by observations of cold gas and by recent theoretical studies (e.g., Revaz et al. 2008; Pope 2009; Wilman 2009, 2011; Nesvadba et al. 2011; Gaspari2012a ,b; McCourt et al. 2012; Sharma et al. 2012; Farage et al. 2012)

• It allows a fast communication between the surrounding gas (ICM) and the SMBH.

• In some cases the AGN feedback in clusters proceeds faster than star formation does. <u>Consequences:</u>

SMBH that are above the BH-bulge mass relation (e.g., McConnell et al. 2011), might be formed in such energetic feedback modes.

→ Such an energetic outburst might remove a cooling flow.

→ Larger mass removal than star formation might occur in galaxy formation.

This is the feedback mode we propose for MS 0735.6+7421 (no need for BH spin) next page

→ MS 0735.6+7421

(Sternberg & Soker 2009)

density

0.5 Mpc

MS 0735.6+7421 (McNamara et al.)

MS 0735.6+7421

Accretion power, not spin power:

Accreted mass: $4 \times 10^8 (\varepsilon / 0.1)^{-1} M_{\odot}$ Mass in jets: $8 \times 10^9 (v / 0.1c)^{-2} M_{\odot}$ Allowed star formation ~10⁸ yr ago: ~10⁹ M_{\odot} Star foramtion \ll Expelled mass

(For low star formation see also Nesvadba et al. 2011)

Heating

- (1) Vortices play a key role in the jets-ICM interaction process (see posters by Gilkis and by Rafaelovich):
- Determine the morphology .
- Single jet-episode can excite many sound waves.
- Single jet-episode can form a chain of bubbles.
- Heating is mainly by mixing in small vortices (not by shocks!).
- Heating works perpendicular to the jets' axis.

(2) Observed morphologies require precessing, or wide jets, or ICM motion. This can remove huge amount of mass from the center.

CHAIN OF X-RAY DEFICIENT BUBBLES BY A SINGLE JET ACTIVITY EPISODE

Implications to galaxy formation

(1) Cooling flow existed during galaxy formation: To efficiently remove the ISM, the gas needs to occupy a large volume. This implies hot gas, hence the presence of cooling flow during galaxy formation (Soker 2010).

(2) AGN feedback as in clusters can remove dark matter from the center at galaxy formation: The AGN heating by wide or precessing jets via vortices removes large quantities of gas from the center in a short time. Such a process during galaxy formation can remove a substantial fraction of the mass from the center in a short time. This influences the orbits of stars as well as of dark matter particles. Namely, AGN activity with a mass feedback as in cooling flow clusters can remove dark matter from the center of galaxies during their formation. (see Governato et al. 2012 for mass removal with Sne)

REFERENCES

\bibitem[Farage et al.(2012)]{Farage 2012} Farage, C.~L., McGregor, P.~J., \& Dopita, M.~A.\ 2012, \apj, 747, 28 \bibitem[Gaspari et al.(2012a)]{Gaspari2012a Gaspari, M., Brighenti, F., \& Temi, P.\ 2012a, arXiv:1202.6054 \bibitem[Gaspari et al.(2012b)]{Gaspari 2012b} Gaspari, M., Ruszkowski, M., \& Sharma, P.\ 2012b, \apj, 746, 94 \bibitem[Governato et al.(2012)]{Governato2012} Governato, F., Zolotov, A., Pontzen, A. et al. \mnras, \bibitem[McConnell et al.(2011)]{McConnell2011} McConnell, N.~J., Ma, C.-P., Gebhardt, K., et al.\ 2011, \nat, 480, 215 \bibitem[McCourt et al.(2012)]{McCourt 2012} McCourt, M., Sharma, P., Quataert, E., \& Parrish, I.~J.\ 2012, \mnras, 419, 3319 \bibitem[Mendygral et al.(2012)]{Mendygral2012} Mendygral, P., Jones, T., \& Dolag, K.\ 2012, arXiv:1203.2312 \bibitem[Nesvadba et al.(2011)]{Nesvadba2011} Nesvadba, N.~P.~H., Boulanger, F., Lehnert, M.~D., Guillard, P., \& Salome, P.\ 2011, \aap, 536, L5 \bibitem[Pope(2009)]{Pope2009} Pope, E.~C.~D.\ 2009, \mnras, 395, 2317 \bibitem[Revaz et al.(2008)]{Revaz2008} Revaz, Y., Combes, F., \& Salom{\'e}, P.\ 2008, \aap, 477, L33 \bibitem[Sharma et al.(2012)]{Sharma2012} Sharma, P., McCourt, M., Quataert, E., \& Parrish, I.~J.\2012, \mnras, 420, 3174 \bibitem[Wilman et al.(2011)]{Wilman2011} Wilman, R.~J., Edge, A.~C., McGregor, P.~J., \& McNamara, B.~R.\ 2011, \mnras, 416, 2060 \bibitem[Wilman et al.(2009)]{Wilman 2009} Wilman, R.~J., Edge, A.~C., \& Swinbank, A.~M.\ 2009, \mnras, 395, 1355