

The 2XMMi/SDSS Galaxy Cluster Survey

Ali Takey^{1,2} (atakey@aip.de) Axel Schwope¹ and Georg Lamer¹ 1- Leibniz-Institut für Astrophysik Potsdam (AIP), Potsdam, Germany

2- National Research Institute of Astronomy and Geophysics (NRIAG), Cairo, Egypt

The 2XMMi/SDSS Galaxy Cluster Survey

Aims:

- Identifying new X-ray galaxy clusters
- Investigating the X-ray scaling relations
- Correlating X-ray and optical properties

2XMMi-DR3 : XMM-Newton Serendipitous Source Catalogue (Watson et al. 2009)

Number of extended detections : 30470

Selecting:

1- extended

- 2- | bll| > 20 deg
- 3- real detection
- 4- in the footprint of the SDSS-DR7

----- 1887 detections

Excluding:

- I targets of Obslds
- II in a field with large extended targets
- III repeating detections
- IV spurious detections
- V low-redshift galaxies

----- 1180 cluster candidates

AIP

II- Galaxy Cluster redshifts 1- Redshifts from the literature (Takey et al. 2011, 2011A&A, 534A 120T)

(Takey et al. 2011, 2011A&A...534A.120T)

2XMM J104421.8+213029

Optically selected cluster catalogs

CLG	Nr.	Redshift	SDSS	X-ray	Nr.CLG
catalogue	CLG	range		$\text{CLG}\left(l'\right)$	sample
GMBCG	55000	0.1-0.55	DR7	136	123
WHL	39688	0.05-0.6	DR6	150	72
MaxBCG	13823	0.1-0.3	DR5	54	20
AMF	69173	0.045 - 0.78	DR6	127	60
Total					275

275 optically confirmed clusters with photo_z (< SDSS-DR7) 182/275 with spec_z (SDSS-DR8)

175/275 first cluster sample with their X-ray parameters (L-T relation)

II- Galaxy Cluster redshifts

2- Estimation of the optical redshifts3- Follow-up imaging and spectroscopy

cluster candidates at z > 0.6 (Opt/NIR) cluster candidates at z <= 0.6 (SDSS) cluster at z > 1 cluster at z = 0.48

The detection algorithm of CLGs in optical band I- Identify the BCG (<1 arcmin)

2XMM J102133.2+213752 at z = 0.1873

The detection algorithm of CLGs in optical bandII- N_{memb} (< R_{500}) $[z_{p, BCG} \pm 0.04(1 + z_{p, BCG})]$ III- A cluster is detected if : $1 - N_{memb}$ (< R_{500}) >= 82- confirmed through the visual inspection

- cluster $z_{_{\rm p}}$ and $z_{_{\rm s}}$ as average of $\rm N_{_{\rm memb}}~(<\!R_{_{\rm 500}})$

The optically confirmed cluster sample 530/1180 clusters

75% are new X-ray galaxy clusters. 301/530 objects are known as optically selected clusters 310/530 with spectroscopic redshifts

III- X-ray data reduction and analysis 2XMM J102133.2+213752 at z = 0.1873

Spectral Fitting:

(Tx, Fx, Lx (0.5-2keV, Bol.), errors) ($\Delta T/T < 0.5$, $\Delta L/L < 0.5$, acceptable fits)

Extrapolation:

Cluster Mass

X-ray Luminosity

X-ray Temperature

Correlating X-ray and optical properties (250 clusters at z<0.42)

Summary

- The survey comprises 530 optically confirmed clusters with redshift estimations (0.04 – 0.7), of these 310 with spectroscopic redshifts.
- 353 clusters with temperature measurements (0.3 6 keV) and mass estimations (2 50 x 10^{13} M_{sun}).
- The slope of the derived L-T relation from the current sample is consistent with the published ones for clusters with high luminosities.
- We investigated the correlations between the optical and X-ray properties of a sub-sample.

Gallery

Fig. A.2. detid = 090256: 2XMM J083454.8+553422 at $z_s = 0.2421$ ($F_{ap} [0.5 - 2] keV = 165.21 \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$).

Fig. A.3. detid = 312615: 2XMM J091935.0+303157 at $z_s = 0.4273$ ($F_{ap} [0.5 - 2] keV = 16.03 \times 10^{-14}$ erg cm⁻² s⁻¹).