Probing the Microphysics of the Intracluster Medium with Cold Fronts

John ZuHone (NASA/GSFC)

with M. Markevitch (NASA/GSFC), D. Lee (Chicago), M. Ruszkowski (Michigan)

Administered by Oak Ridge Associated Universities

Observations of Gas Sloshing

- The signature: cold fronts in relaxed cool-core clusters
- Spiral-shaped discontinuities in surface brightness and projected temperature
- Most easily explained by the "sloshing" of the cool core gas in the dark matter potential well
- Cold gas has been uplifted from the gravitational potential minimum and formed a contact discontinuity in pressure equilibrium with the hotter, less dense gas

Why Are the Fronts Stable?

- Large velocity shears exist across the cold front; the fronts should be susceptible to the effects of the Kelvin-Helmholtz instability
- Thermal conduction, if present, should smooth out the temperature gradient
- What could stabilize the front surfaces?
 - Viscosity?
 - Magnetic fields?
- The fronts could tell us something about the physics of the ICM

Interaction with a gasless subcluster

R = 5

b = 500 kpc

ZuHone, Markevitch, and Johnson 2010

Temperature (keV) slice with DM contours

Interaction with a gasless subcluster

eudocolo ar: temp 22.00

- 12.08

400

R = 5

b = 500 kpc

ZuHone, Markevitch, and Johnson 2010

t = 0 Gut Temperature (keV) slice with DM contours

Gasless subcluster R = 5b = 500 kpclsotropic Spitzer viscosity ZuHone, Markevitch, and Johnson 2010

Temperature (keV) slice with DM contours

Temperature (keV) slice with DM contours

Sloshing with Magnetic Fields

T (keV)

 $\beta = p/p_B$

ZuHone, Markevitch, and Lee 2011

Sloshing with Magnetic Fields

T (keV)

400 kpc

 $\beta = p/p_B$

ZuHone, Markevitch, and Lee 2011

Sloshing with Magnetic Fields T (keV)No Fields $\beta \sim 400$

ZuHone, Markevitch, and Lee 2011

Sloshing with Magnetic Fields T (keV)

No Fields

400 kpc

ZuHone, Markevitch, and Lee 2011

Anisotropic Thermal Conduction

- The sharp temperature jumps at cold fronts indicate conduction is suppressed there
- In the ICM, $\rho_L << \lambda_{mfp} \Rightarrow$ conduction is anisotropic, along the field lines
- Perhaps the draping layers will do the trick?

Anisotropic Thermal Conduction

- Exploring a parameter space of conduction coefficients:
 - $\kappa_{\parallel} = 0, \kappa_{\perp} = 0$ (No conduction)
 - $\kappa_{||} = 1, \kappa_{\perp} = 0$ (Spitzer conduction)
 - $\kappa_{||} = 0.1, \kappa_{\perp} = 0$ (conduction suppressed by magnetic mirrors on small scales)
 - $\kappa_{\parallel} = 0.1, \kappa_{\perp} = 0.01$ (small perpendicular conduction from field line reconnection)

Temperature Slices

arXiv: 1204.6005

Temperature Jumps

arXiv:1204.6005

Density Jumps

arXiv:1204.6005

Magnetic Field Lines

arXiv:1204.6005

Magnetic Field Lines

z-axis

x-axis

Beginning at points with T < 4.5 keV and continuing for 100 kpc arXiv:1204.6005

X-Ray Images

Summary and Conclusions

- Spiral cold fronts in galaxy clusters appear to have arisen as a result of encounters with small subclusters
- Viscosity and/or magnetic fields in galaxy clusters can act to stabilize cold fronts against instabilities
- Despite the draping magnetic fields, anisotropic thermal conduction can smear out cold fronts... maybe place constraints on conduction in the bulk of the ICM?